Matching Items (9)
Filtering by

Clear all filters

150069-Thumbnail Image.png
Description
Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive imaging modality that is capable of producing quantitative vascular flow velocity information. The encoding of velocity information can significantly increase the imaging acquisition and reconstruction durations associated with this technique. The purpose of this work is to provide mechanisms for reducing

Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive imaging modality that is capable of producing quantitative vascular flow velocity information. The encoding of velocity information can significantly increase the imaging acquisition and reconstruction durations associated with this technique. The purpose of this work is to provide mechanisms for reducing the scan time of a 3D phase contrast exam, so that hemodynamic velocity data may be acquired robustly and with a high sensitivity. The methods developed in this work focus on the reduction of scan duration and reconstruction computation of a neurovascular PCMRA exam. The reductions in scan duration are made through a combination of advances in imaging and velocity encoding methods. The imaging improvements are explored using rapid 3D imaging techniques such as spiral projection imaging (SPI), Fermat looped orthogonally encoded trajectories (FLORET), stack of spirals and stack of cones trajectories. Scan durations are also shortened through the use and development of a novel parallel imaging technique called Pretty Easy Parallel Imaging (PEPI). Improvements in the computational efficiency of PEPI and in general MRI reconstruction are made in the area of sample density estimation and correction of 3D trajectories. A new method of velocity encoding is demonstrated to provide more efficient signal to noise ratio (SNR) gains than current state of the art methods. The proposed velocity encoding achieves improved SNR through the use of high gradient moments and by resolving phase aliasing through the use measurement geometry and non-linear constraints.
ContributorsZwart, Nicholas R (Author) / Frakes, David H (Thesis advisor) / Pipe, James G (Thesis advisor) / Bennett, Kevin M (Committee member) / Debbins, Josef P (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2011
152200-Thumbnail Image.png
Description
Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in

Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in the encoding gradient waveforms. This causes sampling discrepancies between the actual and the ideal k-space trajectory. Reconstruction assuming an ideal trajectory can result in shading and blurring artifacts in spiral images. Current methods to estimate such hardware errors require many modifications to the pulse sequence, phantom measurements or specialized hardware. This work presents a new method to estimate time-varying system delays for spiral-based trajectories. It requires a minor modification of a conventional stack-of-spirals sequence and analyzes data collected on three orthogonal cylinders. The method is fast, robust to off-resonance effects, requires no phantom measurements or specialized hardware and estimate variable system delays for the three gradient channels over the data-sampling period. The initial results are presented for acquired phantom and in-vivo data, which show a substantial reduction in the artifacts and improvement in the image quality.
ContributorsBhavsar, Payal (Author) / Pipe, James G (Thesis advisor) / Frakes, David (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2013
137469-Thumbnail Image.png
Description
Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation

Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation or pO2 in patients to determine a personalized treatment method. This project focuses on creating and characterizing nanoemulsions using a pO2 reporter molecule hexamethyldisiloxane (HMDSO) and its longer chain variants as well as assessing their cytotoxicity. We also explored creating multi-modal (MRI/Fluorescence) nanoemulsions.
ContributorsGrucky, Marian Louise (Author) / Kodibagkar, Vikram (Thesis director) / Rege, Kaushal (Committee member) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
132526-Thumbnail Image.png
Description
In the United States, an estimated 2 million cases of traumatic brain injury (TBI) resulting in more than 50,000 deaths occur every year. TBI induces an immediate primary injury resulting in local or diffuse cell death in the brain. Then a secondary injury occurs through neuroinflammation from immune cells in

In the United States, an estimated 2 million cases of traumatic brain injury (TBI) resulting in more than 50,000 deaths occur every year. TBI induces an immediate primary injury resulting in local or diffuse cell death in the brain. Then a secondary injury occurs through neuroinflammation from immune cells in response to primary injury. Microglia, the resident immune cell of the central nervous system, play a critical role in neuroinflammation following TBI. Microglia make up 10% of all cells in the nervous system and are the fastest moving cells in the brain, scanning the entire parenchyma every several hours. Microglia have roles in both the healthy and injured brain. In the healthy brain, microglia can produce neuroprotective factors, clear cellular debris, and organize neurorestorative processes to recover from TBI. However, microglia mediated neuroinflammation during secondary injury produces pro-inflammatory and cytotoxic mediators contributing to neuronal dysfunction, inhibition of CNS repair, and cell death. Furthermore, neuroinflammation is a prominent feature in many neurodegenerative diseases such as Alzheimer’s, and Parkinson’s disease, of which include overactive microglia function. Microglia cell morphology, activation, and response to TBI is poorly understood. Currently, imaging microglia can only be performed while the animal is stationary and under anesthesia. The Miniscope technology allows for real-time visualization of microglia in awake behaving animals. The Miniscope is a miniature fluorescent microscope that can be implanted over a craniectomy to image microglia. Currently, the goals of Miniscope imaging are to improve image quality and develop time-lapse imaging capabilities. There were five main sub-projects that focused on these goals including surgical nose cone design, surgical holder design, improved GRIN lens setup, improved magnification through achromatic lenses, and time-lapse imaging hardware development. Completing these goals would allow for the visualization of microglia function in the healthy and injured brain, elucidating important immune functions that could provide new strategies for treating brain diseases.
ContributorsNelson, Andrew Frederick (Author) / Stabenfeldt, Sarah (Thesis director) / Lifshitz, Jonathan (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133517-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a major concern in public health due to its prevalence and effect. Every year, about 1.7 million TBIs are reported [7]. According to the According to the Centers for Disease Control and Prevention (CDC), 5.5% of all emergency department visits, hospitalizations, and deaths from 2002

Traumatic brain injury (TBI) is a major concern in public health due to its prevalence and effect. Every year, about 1.7 million TBIs are reported [7]. According to the According to the Centers for Disease Control and Prevention (CDC), 5.5% of all emergency department visits, hospitalizations, and deaths from 2002 to 2006 are due to TBI [8]. The brain's natural defense, the Blood Brain Barrier (BBB), prevents the entry of most substances into the brain through the blood stream, including medicines administered to treat TBI [11]. TBI may cause the breakdown of the BBB, and may result in increased permeability, providing an opportunity for NPs to enter the brain [3,4]. Dr. Stabenfeldt's lab has previously established that intravenously injected nanoparticles (NP) will accumulate near the injury site after focal brain injury [4]. The current project focuses on confirmation of the accumulation or extravasation of NPs after brain injury using 2-photon microscopy. Specifically, the project used controlled cortical impact injury induced mice models that were intravenously injected with 40nm NPs post-injury. The MATLAB code seeks to analyze the brain images through registration, segmentation, and intensity measurement and evaluate if fluorescent NPs will accumulate in the extravascular tissue of injured mice models. The code was developed with 2D bicubic interpolation, subpixel image registration, drawn dimension segmentation and fixed dimension segmentation, and dynamic image analysis. A statistical difference was found between the extravascular tissue of injured and uninjured mouse models. This statistical difference proves that the NPs do extravasate through the permeable cranial blood vessels in injured cranial tissue.
ContributorsIrwin, Jacob Aleksandr (Author) / Stabenfeldt, Sarah (Thesis director) / Bharadwaj, Vimala (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135480-Thumbnail Image.png
Description
Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension and subsequently reconstructs the missing data. This technique has been

Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension and subsequently reconstructs the missing data. This technique has been shown to retain a high level of fidelity even with an acceleration factor of 5. Currently there exist several different scanner types that each have their separate analytical methods in MATLAB. A graphical user interface (GUI) was created to facilitate a single computing platform for these different scanner types in order to improve the ease and efficiency with which researchers and clinicians interact with this technique. A GUI was successfully created for both prospective and retrospective MRSI data analysis. This GUI retained the original high fidelity of the reconstruction technique and gave the user the ability to load data, load reference images, display intensity maps, display spectra mosaics, generate a mask, display the mask, display kspace and save the corresponding spectra, reconstruction, and mask files. Parallelization of the reconstruction algorithm was explored but implementation was ultimately unsuccessful. Future work could consist of integrating this parallelization method, adding intensity overlay functionality and improving aesthetics.
ContributorsLammers, Luke Michael (Author) / Kodibagkar, Vikram (Thesis director) / Hu, Harry (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
157555-Thumbnail Image.png
Description
Calcium imaging is a well-established, non-invasive or minimally technique designed to study the electrical signaling neurons. Calcium regulates the release of gliotransmitters in astrocytes. Analyzing astrocytic calcium transients can provide significant insights into mechanisms such as neuroplasticity and neural signal modulation.

In the past decade, numerous methods have been developed

Calcium imaging is a well-established, non-invasive or minimally technique designed to study the electrical signaling neurons. Calcium regulates the release of gliotransmitters in astrocytes. Analyzing astrocytic calcium transients can provide significant insights into mechanisms such as neuroplasticity and neural signal modulation.

In the past decade, numerous methods have been developed to analyze in-vivo calcium imaging data that involves complex techniques such as overlapping signals segregation and motion artifact correction. The hypothesis used to detect calcium signal is the spatiotemporal sparsity of calcium signal, and these methods are unable to identify the passive cells that are not actively firing during the time frame in the video. Statistics regarding the percentage of cells in each frame of view can be critical for the analysis of calcium imaging data for human induced pluripotent stem cells derived neurons and astrocytes.

The objective of this research is to develop a simple and efficient semi-automated pipeline for analysis of in-vitro calcium imaging data. The region of interest (ROI) based image segmentation is used to extract the data regarding intensity fluctuation caused by calcium concentration changes in each cell. It is achieved by using two approaches: basic image segmentation approach and a machine learning approach. The intensity data is evaluated using a custom-made MATLAB that generates statistical information and graphical representation of the number of spiking cells in each field of view, the number of spikes per cell and spike height.
ContributorsBhandarkar, Siddhi Umesh (Author) / Brafman, David (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Tian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2019
155261-Thumbnail Image.png
Description
Dynamic susceptibility contrast MRI (DSC-MRI) is a powerful tool used to quantitatively measure parameters related to blood flow and volume in the brain. The technique is known as a “bolus-tracking” method and relies upon very fast scanning to accurately measure the flow of contrast agent into and out of a

Dynamic susceptibility contrast MRI (DSC-MRI) is a powerful tool used to quantitatively measure parameters related to blood flow and volume in the brain. The technique is known as a “bolus-tracking” method and relies upon very fast scanning to accurately measure the flow of contrast agent into and out of a region of interest. The need for high temporal resolution to measure contrast agent dynamics limits the spatial coverage of perfusion parameter maps which limits the utility of DSC-perfusion studies in pathologies involving the entire brain. Typical clinical DSC-perfusion studies are capable of acquiring 10-15 slices, generally centered on a known lesion or pathology.

The methods developed in this work improve the spatial coverage of whole-brain DSC-MRI by combining a highly efficient 3D spiral k-space trajectory with Generalized Autocalibrating Partial Parallel Acquisition (GRAPPA) parallel imaging without increasing temporal resolution. The proposed method is capable of acquiring 30 slices with a temporal resolution of under 1 second, covering the entire cerebrum with isotropic spatial resolution of 3 mm. Additionally, the acquisition method allows for correction of T1-enhancing leakage effects by virtue of collecting two echoes, which confound DSC perfusion measurements. The proposed DSC-perfusion method results in high quality perfusion parameter maps across a larger volume than is currently available with current clinical standards, improving diagnostic utility of perfusion MRI methods, which ultimately improves patient care.
ContributorsTurley, Dallas C (Author) / Pipe, James G (Thesis advisor) / Kodibagkar, Vikram (Thesis advisor) / Frakes, David (Committee member) / Sadleir, Rosalind (Committee member) / Schmainda, Kathleen (Committee member) / Arizona State University (Publisher)
Created2017
161721-Thumbnail Image.png
Description
This thesis describes the development, characterization, and application of new biomedical technologies developed around the photoacoustic effect. The photoacoustic effect is defined as optical absorption-based generation of ultrasound and provides the foundation for a unique method of imaging and molecular detection. The range of applications of the photoacoustic effect have

This thesis describes the development, characterization, and application of new biomedical technologies developed around the photoacoustic effect. The photoacoustic effect is defined as optical absorption-based generation of ultrasound and provides the foundation for a unique method of imaging and molecular detection. The range of applications of the photoacoustic effect have not yet been fully explored. Photoacoustic endoscopy (PAE) has emerged as a minimally invasive tool for imaging internal organs and tissues. One of the main themes of this dissertation involves the first reported dual-intrauterine photoacoustic and ultrasound deep-tissue imaging endoscope. This device was designed to enable physicians at the point-of-care to better elucidate overall gynecological health, by imaging the lining of the human uterus. Intrauterine photoacoustic endoscopy is made possible due to the small diameter of the endoscope (3mm), which allows for complete, 360-degree organ analysis from within the uterine cavity. In certain biomedical applications, however, further minimization is necessary. Sufficiently small diameter endoscopes may allow for the possibility of applying PAE in new areas. To further miniaturize the diameter of our endoscopes, alternative imaging probe designs were investigated. The proposed PAE architecture utilizes a hollow optical waveguide to allow for concentric guiding of both light and sound. This enables imaging depths of up to several millimeters into animal tissue while maintaining an outer diameter of roughly 1mm. In the final focus of this dissertation, these waveguides are further investigated for use in micropipette electrodes, common in the field of single cell electrophysiology. Pulsed light is coupled with these electrodes providing real-time photoacoustic feedback, useful in navigation towards intended targets. Lastly, fluorescence can be generated and collected at the micropipette aperture by utilizing an intra-electrode tapered optical fiber. This allows for a targeted robotic approach to labeled neurons that is independent of microscopy.
ContributorsMiranda, Christopher (Author) / Smith, Barbara S. (Thesis advisor) / Kodibagkar, Vikram (Committee member) / LaBaer, Joshua (Committee member) / Frakes, David (Committee member) / Barkley, Joel (Committee member) / Arizona State University (Publisher)
Created2021