Matching Items (3)
Filtering by

Clear all filters

151112-Thumbnail Image.png
Description
The Arizona State University Herbarium began in 1896 when Professor Fredrick Irish collected the first recorded Arizona specimen for what was then called the Tempe Normal School - a Parkinsonia microphylla. Since then, the collection has grown to approximately 400,000 specimens of vascular plants and lichens. The most recent project

The Arizona State University Herbarium began in 1896 when Professor Fredrick Irish collected the first recorded Arizona specimen for what was then called the Tempe Normal School - a Parkinsonia microphylla. Since then, the collection has grown to approximately 400,000 specimens of vascular plants and lichens. The most recent project includes the digitization - both the imaging and databasing - of approximately 55,000 vascular plant specimens from Latin America. To accomplish this efficiently, possibilities in non-traditional methods, including both new and existing technologies, were explored. SALIX (semi-automatic label information extraction) was developed as the central tool to handle automatic parsing, along with BarcodeRenamer (BCR) to automate image file renaming by barcode. These two developments, combined with existing technologies, make up the SALIX Method. The SALIX Method provides a way to digitize herbarium specimens more efficiently than the traditional approach of entering data solely through keystroking. Using digital imaging, optical character recognition, and automatic parsing, I found that the SALIX Method processes data at an average rate that is 30% faster than typing. Data entry speed is dependent on user proficiency, label quality, and to a lesser degree, label length. This method is used to capture full specimen records, including close-up images where applicable. Access to biodiversity data is limited by the time and resources required to digitize, but I have found that it is possible to do so at a rate that is faster than typing. Finally, I experiment with the use of digital field guides in advancing access to biodiversity data, to stimulate public engagement in natural history collections.
ContributorsBarber, Anne Christine (Author) / Landrum, Leslie R. (Thesis advisor) / Wojciechowski, Martin F. (Thesis advisor) / Gilbert, Edward (Committee member) / Lafferty, Daryl (Committee member) / Arizona State University (Publisher)
Created2012
157900-Thumbnail Image.png
Description
Readout Integrated Circuits(ROICs) are important components of infrared(IR) imag

ing systems. Performance of ROICs affect the quality of images obtained from IR

imaging systems. Contemporary infrared imaging applications demand ROICs that

can support large dynamic range, high frame rate, high output data rate, at low

cost, size and power. Some of these applications are

Readout Integrated Circuits(ROICs) are important components of infrared(IR) imag

ing systems. Performance of ROICs affect the quality of images obtained from IR

imaging systems. Contemporary infrared imaging applications demand ROICs that

can support large dynamic range, high frame rate, high output data rate, at low

cost, size and power. Some of these applications are military surveillance, remote

sensing in space and earth science missions and medical diagnosis. This work focuses

on developing a ROIC unit cell prototype for National Aeronautics and Space Ad

ministration(NASA), Jet Propulsion Laboratory’s(JPL’s) space applications. These

space applications also demand high sensitivity, longer integration times(large well

capacity), wide operating temperature range, wide input current range and immunity

to radiation events such as Single Event Latchup(SEL).

This work proposes a digital ROIC(DROIC) unit cell prototype of 30ux30u size,

to be used mainly with NASA JPL’s High Operating Temperature Barrier Infrared

Detectors(HOT BIRDs). Current state of the art DROICs achieve a dynamic range

of 16 bits using advanced 65-90nm CMOS processes which adds a lot of cost overhead.

The DROIC pixel proposed in this work uses a low cost 180nm CMOS process and

supports a dynamic range of 20 bits operating at a low frame rate of 100 frames per

second(fps), and a dynamic range of 12 bits operating at a high frame rate of 5kfps.

The total electron well capacity of this DROIC pixel is 1.27 billion electrons, enabling

integration times as long as 10ms, to achieve better dynamic range. The DROIC unit

cell uses an in-pixel 12-bit coarse ADC and an external 8-bit DAC based fine ADC.

The proposed DROIC uses layout techniques that make it immune to radiation up to

300krad(Si) of total ionizing dose(TID) and single event latch-up(SEL). It also has a

wide input current range from 10pA to 1uA and supports detectors operating from

Short-wave infrared (SWIR) to longwave infrared (LWIR) regions.
ContributorsPraveen, Subramanya Chilukuri (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Long, Yu (Committee member) / Arizona State University (Publisher)
Created2019
157957-Thumbnail Image.png
Description
Point of Load (POL) DC-DC converters are increasingly used in space applications, data centres, electric vehicles, portable computers and devices and medical electronics. Heavy computing and processing capabilities of the modern devices have ushered the use of higher battery supply voltage to increase power storage. The need to address

Point of Load (POL) DC-DC converters are increasingly used in space applications, data centres, electric vehicles, portable computers and devices and medical electronics. Heavy computing and processing capabilities of the modern devices have ushered the use of higher battery supply voltage to increase power storage. The need to address this consumer experience driven requirement has propelled the evolution of the next generation of small form-factor power converters which can operate with higher step down ratios while supplying heavy continuous load currents without sacrificing efficiency. Constant On-Time (COT) converter topology is capable of achieving stable operation at high conversion ratio with minimum off-chip components and small silicon area. This work proposes a Constant On-Time buck dc-dc converter for a wide dynamic input range and load currents from 100mA to 10A. Accuracy of this ripple based converter is improved by a unique voltage positioning technique which modulates the reference voltage to lower the average ripple profile close to the nominal output. Adaptive On-time block features a transient enhancement scheme to assist in faster voltage droop recovery when the output voltage dips below a defined threshold. UtilizingGallium Nitride (GaN) power switches enable the proposed converter to achieve very high efficiency while using smaller size inductor-capacitor (LC) power-stage. Use of novel Superjunction devices with higher drain-source blocking voltage simplifies the complex driver design and enables faster frequency of operation. It allows 1.8VComplementary Metal-Oxide Semiconductor (CMOS) devices to effectively drive GaNpower FETs which require 5V gate signal swing. The presented controller circuit uses internal ripple generation which reduces reliance on output cap equivalent series resistance (ESR) for loop stability and facilitates ripples reduction at the output. The ripple generation network is designed to provide ai

optimally stable performance while maintaining load regulation and line regulation accuracy withing specified margin. The chip with ts external Power FET package is proposed to be integrated on a printed circuit board for testing. The designed power converter is expected to operate under 200 MRad of a total ionising dose of radiation enabling it to function within large hadron collider at CERN and space satellite and probe missions.
ContributorsJoshi, Omkar (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Long, Yu (Committee member) / Arizona State University (Publisher)
Created2019