Matching Items (2)
Filtering by

Clear all filters

156699-Thumbnail Image.png
Description
An exhaustive parameter study involving 133 dynamic crystallization experiments was conducted, to investigate the validity of the planetary embryo bow shock model by testing whether the cooling rates predicted by this model are consistent with the most dominant chondrule texture, porphyritic. Results show that using coarse-grained precursors and heating durations

An exhaustive parameter study involving 133 dynamic crystallization experiments was conducted, to investigate the validity of the planetary embryo bow shock model by testing whether the cooling rates predicted by this model are consistent with the most dominant chondrule texture, porphyritic. Results show that using coarse-grained precursors and heating durations ≤ 5 minutes at peak temperature, porphyritic textures can be reproduced at cooling rates ≤ 600 K/hr, rates consistent with planetary embryo bow shocks. Porphyritic textures were found to be commonly associated with skeletal growth, which compares favorably to features in natural chondrules from Queen Alexandra Range 97008 analyzed, which show similar skeletal features. It is concluded that the experimentally reproduced porphyritic textures are consistent with those of natural chondrules. This work shows heating duration is a major determinant of chondrule texture and the work further constrains this parameter by measuring the rate of chemical dissolution of relict grains. The results provide a robust, independent constraint that porphyritic chondrules were heated at their peak temperatures for ≤ 10 minutes. This is also consistent with heating by bow shocks. The planetary embryo bow shock model therefore remains a viable chondrule mechanism for the formation of the vast majority of chondrules, and the results presented here therefore strongly suggest that large planetary embryos were present and on eccentric orbits during the first few million years of the Solar System’s history.
ContributorsPerez, Alexandra Marie (Author) / Desch, Steven J (Thesis advisor) / Till, Christy B. (Committee member) / Schrader, Devin L (Committee member) / Arizona State University (Publisher)
Created2018
158560-Thumbnail Image.png
Description
Meteorites and their components can be used to unravel the history of the early Solar System. Carbonaceous chondrites are meteorites that originated from undifferentiated parent bodies that formed within a few million years of the beginning of the Solar System. These meteorites contain calcium-aluminum-rich inclusions (CAIs), which are the oldest

Meteorites and their components can be used to unravel the history of the early Solar System. Carbonaceous chondrites are meteorites that originated from undifferentiated parent bodies that formed within a few million years of the beginning of the Solar System. These meteorites contain calcium-aluminum-rich inclusions (CAIs), which are the oldest dated solids in the Solar System at ~4.567 billion years old and thus preserve a record of the earliest stage of Solar System formation. The isotopic compositions of CAIs and bulk carbonaceous chondrites can be used to identify the sources of material inherited by the protoplanetary disk, assess the degree of mixing in the disk, and evaluate sample origins and potential genetic relationships between parent bodies. In particular, mass-independent Cr and Ti isotopic compositions have proven to be especially useful for these purposes.

In this work, I first developed new methods for the chemical separation of Cr and Ti, improving the reliability of existing methods to ensure consistent yields and accurate isotopic measurements. I then measured the Cr and Ti isotopic compositions of CAIs from CV and CK chondrites to determine the extent of isotopic heterogeneity in the CAI-forming region and assess the role of CAIs in the preservation of planetary-scale isotopic anomalies. My results show that all measured CAIs originated from a common isotopic reservoir that incorporated material from at least three distinct nucleosynthetic sources and preserved limited isotopic heterogeneity. These results also suggest that planetary-scale isotopic anomalies cannot be attributed solely to the transport of CAIs from one part of the solar nebula to another. I finally measured the Cr and Ti isotopic compositions of bulk CM, CO, and ungrouped chondrites to evaluate the relationship between CM and CO chondrites, which have been suggested to originate from either distinct but related parent bodies or a common compositionally heterogeneous parent body. My results suggest that CM, CO, and related ungrouped chondrites originated from distinct parent bodies that formed from similar precursor materials in nearby formation regions. These results may have implications for asteroid samples returned by the OSIRIS-REx and Hayabusa2 missions.
ContributorsTorrano, Zachary (Author) / Wadhwa, Meenakshi (Thesis advisor) / Anbar, Ariel D (Committee member) / Schrader, Devin L (Committee member) / Williams, David A. (Committee member) / Young, Patrick A (Committee member) / Arizona State University (Publisher)
Created2020