Matching Items (2)
Filtering by

Clear all filters

168322-Thumbnail Image.png
Description
Past experiments have revealed several unusual properties about interstitial hydrogen atoms in niobium. Absorption isotherms showed that niobium absorbs a large amount of hydrogen without changing its crystal structure. These isotherms also revealed that the interactions between hydrogen atoms in niobium are a combination of long-range attraction and short-range repulsion

Past experiments have revealed several unusual properties about interstitial hydrogen atoms in niobium. Absorption isotherms showed that niobium absorbs a large amount of hydrogen without changing its crystal structure. These isotherms also revealed that the interactions between hydrogen atoms in niobium are a combination of long-range attraction and short-range repulsion and exhibit many-body characteristics. Other experiments reported the facile thermal diffusion of hydrogen and deuterium in niobium. Contrary to the classical theory of diffusion, these experiments revealed a break in the activation energy of hydrogen diffusion at low temperatures, but no such break was reported for deuterium. Finally, experiments report a phenomenon called electromigration, where hydrogen atoms inside niobium respond to weak electric fields as if they had a positive effective charge. These experimental results date back to when tools like density functional theory (DFT) and modern high-performance computing abilities did not exist. Therefore, the current understanding of these properties is primarily based on inferences from experimental results. Understanding these properties at a deeper level, besides being scientifically important, can profoundly affect various applications involving hydrogen separation and transport. The high-level goal of this work is to use first-principles methods to explain the discussed properties of interstitial hydrogen in niobium. DFT calculations were used to study hydrogen atoms' site preference in niobium and its effect on the cell shape and volume of the host cell. The nature and origin of the interactions between hydrogen atoms were studied through interaction energy, structural, partial charge, and electronic densities of state analysis. A phenomenological model with fewer parameters than traditional models was developed and fit to the experimental absorption data. Thermodynamic quantities such as the enthalpy and entropy of hydrogen dissolution in niobium were derived from this model. The enthalpy of hydrogen dissolution in niobium was also calculated using DFT by sampling different geometric configurations and performing an ensemble-based averaging. Further work is required to explain the observed isotope effects for hydrogen diffusion in niobium and the electromigration phenomena. Applications of the niobium-hydrogen system require studying hydrogen's behavior on niobium's surface.
ContributorsRamcahandran, Arvind (Author) / Lackner, Klaus S. (Thesis advisor) / Zhuang, Houlong (Thesis advisor) / Muhich, Christopher (Committee member) / Singh, Arunima (Committee member) / Arizona State University (Publisher)
Created2021
158742-Thumbnail Image.png
Description
Single-layer pentagonal materials have received limited attention compared with their counterparts with hexagonal structures. They are two-dimensional (2D) materials with pentagonal structures, that exhibit novel electronic, optical, or magnetic properties. There are 15 types of pentagonal tessellations which allow plenty of options for constructing 2D pentagonal lattices. Few of them

Single-layer pentagonal materials have received limited attention compared with their counterparts with hexagonal structures. They are two-dimensional (2D) materials with pentagonal structures, that exhibit novel electronic, optical, or magnetic properties. There are 15 types of pentagonal tessellations which allow plenty of options for constructing 2D pentagonal lattices. Few of them have been explored theoretically or experimentally. Studying this new type of 2D materials with density functional theory (DFT) will inspire the discovery of new 2D materials and open up applications of these materials in electronic and magnetic devices.In this dissertation, DFT is applied to discover novel 2D materials with pentagonal structures. Firstly, I examine the possibility of forming a 2D nanosheet with the vertices of type 15 pentagons occupied by boron, silicon, phosphorous, sulfur, gallium, germanium or tin atoms. I obtain different rearranged structures such as a single-layer gallium sheet with triangular patterns. Then the exploration expands to other 14 types of pentagons, leading to the discoveries of carbon nanosheets with Cairo tessellation (type 2/4 pentagons) and other patterns. The resulting 2D structures exhibit diverse electrical properties. Then I reveal the hidden Cairo tessellations in the pyrite structures and discover a family of planar 2D materials (such as PtP2), with a chemical formula of AB2 and space group pa ̄3. The combination of DFT and geometries opens up a novel route for the discovery of new 2D materials. Following this path, a series of 2D pentagonal materials such as 2D CoS2 are revealed with promising electronic and magnetic applications. Specifically, the DFT calculations show that CoS2 is an antiferromagnetic semiconductor with a band gap of 2.24 eV, and a N ́eel temperature of about 20 K. In order to enhance the superexchange interactions between the ions in this binary compound, I explore the ternary 2D pentagonal material CoAsS, that lacks the inversion symmetry. I find out CoAsS exhibits a higher Curie temperature of 95 K and a sizable piezoelectricity (d11=-3.52 pm/V). In addition to CoAsS, 34 ternary 2D pentagonal materials are discovered, among which I focus on FeAsS, that is a semiconductor showing strong magnetocrystalline anisotropy and sizable Berry curvature. Its magnetocrystalline anisotropy energy is 440 μeV/Fe ion, higher than many other 2D magnets that have been found.
Overall, this work not only provides insights into the structure-property relationship of 2D pentagonal materials and opens up a new route of studying 2D materials by combining geometry and computational materials science, but also shows the potential applications of 2D pentagonal materials in electronic and magnetic devices.
ContributorsLiu, Lei (Author) / Zhuang, Houlong (Thesis advisor) / Singh, Arunima (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2020