Matching Items (4)
Filtering by

Clear all filters

155985-Thumbnail Image.png
Description
Microfluidics has shown great potential in rapid isolation, sorting, and concentration of bioparticles upon its discovery. Over the past decades, significant improvements have been made in device fabrication techniques and microfluidic methodologies. As a result, considerable microfluidic-based isolation and concentration techniques have been developed, particularly for rapid pathogen detection. Among

Microfluidics has shown great potential in rapid isolation, sorting, and concentration of bioparticles upon its discovery. Over the past decades, significant improvements have been made in device fabrication techniques and microfluidic methodologies. As a result, considerable microfluidic-based isolation and concentration techniques have been developed, particularly for rapid pathogen detection. Among all microfluidic techniques, dielectrophoresis (DEP) is one of the most effective and efficient techniques to quickly isolate and separate polarizable particles under inhomogeneous electric field. To date, extensive studies have demonstrated that DEP devices are able to precisely manipulate cells ranging from over 10 μm (mammalian cells) down to about 1 μm (small bacteria). However, very limited DEP studies on manipulating submicron bioparticles, such as viruses, have been reported.

In this dissertation, rapid capture and concentration of two different and representative types of virus particles (Sindbis virus and bacteriophage M13) with gradient insulator-based DEP (g-iDEP) has been demonstrated. Sindbis virus has a near-spherical shape with a diameter ~68 nm, while bacteriophage M13 has a filamentous shape with a length ~900 nm and a diameter ~6 nm. Under specific g-iDEP experimental conditions, the concentration of Sindbis virus can be increased two to six times within only a few seconds, using easily accessible voltages as low as 70 V. A similar phenomenon is also observed with bacteriophage M13. Meanwhile, their different DEP behavior predicts the potential of separating viruses with carefully designed microchannels and choices of experimental condition.

DEP-based microfluidics also shows great potential in manipulating blood samples, specifically rapid separations of blood cells and proteins. To investigate the ability of g-iDEP device in blood sample manipulation, some proofs of principle work was accomplished including separating two cardiac disease-related proteins (myoglobin and heart-type fatty acid binding protein) and red blood cells (RBCs). Consistent separation was observed, showing retention of RBCs and passage of the two spiked protein biomarkers. The numerical concentration of RBCs was reduced (~70 percent after one minute) with the purified proteins available for detection or further processing. This study explores and extends the use of the device from differentiating similar particles to acting as a sample pretreatment step.
ContributorsDing, Jie (Author) / Hayes, Mark A. (Thesis advisor) / Ros, Alexandra (Committee member) / Buttry, Daniel A (Committee member) / Arizona State University (Publisher)
Created2017
157302-Thumbnail Image.png
Description
Dielectrophoresis (DEP) is a technique that influences the motion of polarizable particles in an electric field gradient. DEP can be combined with other effects that influence the motion of a particle in a microchannel, such as electrophoresis and electroosmosis. Together, these three can be used to probe properties

Dielectrophoresis (DEP) is a technique that influences the motion of polarizable particles in an electric field gradient. DEP can be combined with other effects that influence the motion of a particle in a microchannel, such as electrophoresis and electroosmosis. Together, these three can be used to probe properties of an analyte, including charge, conductivity, and zeta potential. DEP shows promise as a high-resolution differentiation and separation method, with the ability to distinguish between subtly-different populations. This, combined with the fast (on the order of minutes) analysis times offered by the technique, lend it many of the features necessary to be used in rapid diagnostics and point-of-care devices.

Here, a mathematical model of dielectrophoretic data is presented to connect analyte properties with data features, including the intercept and slope, enabling DEP to be used in applications which require this information. The promise of DEP to distinguish between analytes with small differences is illustrated with antibiotic resistant bacteria. The DEP system is shown to differentiate between methicillin-resistant and susceptible Staphylococcus aureus. This differentiation was achieved both label free and with bacteria that had been fluorescently-labeled. Klebsiella pneumoniae carbapenemase-positive and negative Klebsiella pneumoniae were also distinguished, demonstrating the differentiation for a different mechanism of antibiotic resistance. Differences in dielectrophoretic behavior as displayed by S. aureus and K. pneumoniae were also shown by Staphylococcus epidermidis. These differences were exploited for a separation in space of gentamicin-resistant and -susceptible S. epidermidis. Besides establishing the ability of DEP to distinguish between populations with small biophysical differences, these studies illustrate the possibility for the use of DEP in applications such as rapid diagnostics.
ContributorsHilton, Shannon (Author) / Hayes, Mark A. (Thesis advisor) / Borges, Chad (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2019
156941-Thumbnail Image.png
Description
Microfluidic systems have gained popularity in the last two decades for their potential applications in manipulating micro- and nano- particulates of interest. Several different microfluidics devices have been built capable of rapidly probing, sorting, and trapping analytes of interest. Microfluidics can be combined with separation science to address challenges of

Microfluidic systems have gained popularity in the last two decades for their potential applications in manipulating micro- and nano- particulates of interest. Several different microfluidics devices have been built capable of rapidly probing, sorting, and trapping analytes of interest. Microfluidics can be combined with separation science to address challenges of obtaining a concentrated and pure distinct analyte from mixtures of increasingly similar entities. Many of these techniques have been developed to assess biological analytes of interest; one of which is dielectrophoresis (DEP), a force which acts on polarizable analytes in the presence of a non-uniform electric fields. This method can achieve high resolution separations with the unique attribute of concentrating, rather than diluting, analytes upon separation. Studies utilizing DEP have manipulated a wide range of analytes including various cell types, proteins, DNA, and viruses. These analytes range from approximately 50 nm to 1 µm in size. Many of the currently-utilized techniques for assessing these analytes are time intensive, cost prohibitive, and require specialized equipment and technical skills.

The work presented in this dissertation focuses on developing and utilizing insulator-based dielectrophoresis (iDEP) to probe a wide range of analytes; where the intrinsic properties of an analyte will determine its behavior in a microchannel. This is based on the analyte’s interactions with the electrokinetic and dielectrophoretic forces present. Novel applications of this technique to probe the biophysical difference(s) between serovars of the foodborne pathogen, Listeria monocytogenes, and surface modified Escherichia coli, are investigated. Both of these applications demonstrate the capabilities of iDEP to achieve high resolution separations and probe slight changes in the biophysical properties of an analyte of interest. To improve upon existing iDEP strategies a novel insulator design which streamlines analytes in an iDEP device while still achieving the desirable forces for separation is developed, fabricated, and tested. Finally, pioneering work to develop an iDEP device capable of manipulating larger analytes, which range in size 10-250 µm, is presented.
ContributorsCrowther, Claire Victoria (Author) / Hayes, Mark A. (Thesis advisor) / Gile, Gillian H (Committee member) / Ros, Alexandra (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2018
158077-Thumbnail Image.png
Description
There is increasing interest and demand in biology studies for identifying and characterizing rare cells or bioparticle subtypes. These subpopulations demonstrate special function, as examples, in multipotent proliferation, immune system response, and cancer diagnosis. Current techniques for separation and identification of these targets lack the accuracy and sensitivity needed to

There is increasing interest and demand in biology studies for identifying and characterizing rare cells or bioparticle subtypes. These subpopulations demonstrate special function, as examples, in multipotent proliferation, immune system response, and cancer diagnosis. Current techniques for separation and identification of these targets lack the accuracy and sensitivity needed to interrogate the complex and diverse bioparticle mixtures. High resolution separations of unlabeled and unaltered cells is an emerging capability. In particular, electric field-driven punctuated microgradient separations have shown high resolution separations of bioparticles. These separations are based on biophysical properties of the un-altered bioparticles. Here, the properties of the bioparticles were identified by ratio of electrokinetic (EK) to dielectrophoretic (DEP) mobilities.

As part of this dissertation, high-resolution separations have been applied to neural stem and progenitor cells (NSPCs). The abundance of NSPCs captured with different range of ratio of EK to DEP mobilities are consistent with the final fate trends of the populations. This supports the idea of unbiased and unlabeled high-resolution separation of NSPCs to specific fates is possible. In addition, a new strategy to generate reproducible subpopulations using varied applied potential were employed for studying insulin vesicles from beta cells. The isolated subpopulations demonstrated that the insulin vesicles are heterogenous and showed different distribution of mobility ratios when compared with glucose treated insulin vesicles. This is consistent with existing vesicle density and local concentration data. Furthermore, proteins, which are accepted as challenging small bioparticles to be captured by electrophysical method, were concentrated by this technique. Proteins including IgG, lysozyme, alpha-chymotrypsinogen A were differentiated and characterized with the ratio factor. An extremely narrow bandwidth and high resolution characterization technique, which is experimentally simple and fast, has been developed for proteins. Finally, the native whole cell separation technique has also been applied for Salmonella serotype identification and differentiation for the first time. The technique generated full differentiation of four serotypes of Salmonella. These works may lead to a less expensive and more decentralized new tool and method for transplantation, proteomics, basic research, and microbiologists, working in parallel with other characterization methods.
ContributorsLiu, Yameng (Author) / Hayes, Mark A. (Thesis advisor) / Wang, Xu (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2020