Matching Items (3)
Filtering by

Clear all filters

152233-Thumbnail Image.png
Description
Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large

Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large sample volumes from over a wide area and transporting them to laboratory testing facilities, which fail to provide any real-time information. This dissertation evaluates the systems currently utilized for in-situ field analyses and the issues hampering the successful deployment of such bioanalytial instruments for environmental applications. The design and development of high throughput, low power, and autonomous Polymerase Chain Reaction (PCR) instruments, amenable for portable field operations capable of providing quantitative results is presented here as part of this dissertation. A number of novel innovations have been reported here as part of this work in microfluidic design, PCR thermocycler design, optical design and systems integration. Emulsion microfluidics in conjunction with fluorinated oils and Teflon tubing have been used for the fluidic module that reduces cross-contamination eliminating the need for disposable components or constant cleaning. A cylindrical heater has been designed with the tubing wrapped around fixed temperature zones enabling continuous operation. Fluorescence excitation and detection have been achieved by using a light emitting diode (LED) as the excitation source and a photomultiplier tube (PMT) as the detector. Real-time quantitative PCR results were obtained by using multi-channel fluorescence excitation and detection using LED, optical fibers and a 64-channel multi-anode PMT for measuring continuous real-time fluorescence. The instrument was evaluated by comparing the results obtained with those obtained from a commercial instrument and found to be comparable. To further improve the design and enhance its field portability, this dissertation also presents a framework for the instrumentation necessary for a portable digital PCR platform to achieve higher throughputs with lower power. Both systems were designed such that it can easily couple with any upstream platform capable of providing nucleic acid for analysis using standard fluidic connections. Consequently, these instruments can be used not only in environmental applications, but portable diagnostics applications as well.
ContributorsRay, Tathagata (Author) / Youngbull, Cody (Thesis advisor) / Goryll, Michael (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2013
151306-Thumbnail Image.png
Description
Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of

Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of microscale sensors that are used for sensing applications, ranging from whole-body monitoring down to molecular sensing. Unfortunately, sensors are often developed without regard to how they will be integrated into biological systems. The complexities of integration are underappreciated. Integration involves more than simply making electrical connections. Interfacing microscale sensors with biological environments requires numerous considerations with respect to the creation of compatible packaging, the management of biological reagents, and the act of combining technologies with different dimensions and material properties. Recent advances in microfluidics, especially the proliferation of soft lithography manufacturing methods, have established the groundwork for creating systems that may solve many of the problems inherent to sensor-fluidic interaction. The adaptation of microelectronics manufacturing methods, such as Complementary Metal-Oxide-Semiconductor (CMOS) and Microelectromechanical Systems (MEMS) processes, allows the creation of a complete biological sensing system with integrated sensors and readout circuits. Combining these technologies is an obstacle to forming complete sensor systems. This dissertation presents new approaches for the design, fabrication, and integration of microscale sensors and microelectronics with microfluidics. The work addresses specific challenges, such as combining commercial manufacturing processes into biological systems and developing microscale sensors in these processes. This work is exemplified through a feedback-controlled microfluidic pH system to demonstrate the integration capabilities of microscale sensors for autonomous microenvironment control.
ContributorsWelch, David (Author) / Blain Christen, Jennifer (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Frakes, David (Committee member) / LaBelle, Jeffrey (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2012
161952-Thumbnail Image.png
Description
This work focuses on qualifying the performance of an optoelectrical measurement system designed to analyze ribonucleic acid (RNA) within a micro sample. The system is capable of measuring light intensity converted to voltage versus time and is a fast, inexpensive, and portable method for rapid detection of biologics such as

This work focuses on qualifying the performance of an optoelectrical measurement system designed to analyze ribonucleic acid (RNA) within a micro sample. The system is capable of measuring light intensity converted to voltage versus time and is a fast, inexpensive, and portable method for rapid detection of biologics such as SARS-CoV-2 virus, or Covid-19 disease. The measurement system consists of a microfluidic chip and a point of care fluorescent reader.The intent of this research is to measure consistency and robustness of the fluorescent reader combined with the microfluidic chip. The consistency and the robustness of the fluorescent reader within the duty cycle of the system power and the measurement system were analyzed with Six Sigma methods. Control charts, analysis of variance (ANOVAs), and variance components calculations were implemented to characterize the reader system. Through the process of this analysis, baseline characteristics were measured and documented providing valuable data for the improved instrument design. The existing microfluidic chip is a prototype that works in combination with the reader based on fluorescent detection. Baseline studies were required to define any issues related to microfluidic autofluorescence. Multiple designs were tested to measure reduction in autofluorescence in the microfluidics. It was found that certain designs performed better than others. One approach for improvement in the microfluidic chip may be achieved by characterizing and source controlling materials, optimizing layers, mask apertures, and mask orientations to determine reliability in the measurable output through the fluorescent reader. Since the reader and the microfluidic are designed to work together, any future studies should explore testing where the two components are considered a coupled system.
ContributorsShabtai, Bat-El (Author) / Blain Christen, Jennifer (Thesis advisor) / Abbas, James (Thesis advisor) / Maass, Eric (Committee member) / Beeman, Scott (Committee member) / Arizona State University (Publisher)
Created2021