Matching Items (3)
Filtering by

Clear all filters

187412-Thumbnail Image.png
Description
It has been found that certain biological organisms, such as Erodium seeds and Scincus scincus, are capable of effectively and efficiently burying themselves in soil. Biological Organisms employ various locomotion modes, including coiling and uncoiling motions, asymmetric body twisting, and undulating movements that generate motion waves. The coiling-uncoiling motion drives

It has been found that certain biological organisms, such as Erodium seeds and Scincus scincus, are capable of effectively and efficiently burying themselves in soil. Biological Organisms employ various locomotion modes, including coiling and uncoiling motions, asymmetric body twisting, and undulating movements that generate motion waves. The coiling-uncoiling motion drives a seed awn to bury itself like a corkscrew, while sandfish skinks use undulatory swimming, which can be thought of as a 2D version of helical motion. Studying burrowing behavior aims to understand how animals navigate underground, whether in their natural burrows or underground habitats, and to implement this knowledge in solving geotechnical penetration problems. Underground horizontal burrowing is challenging due to overcoming the resistance of interaction forces of granular media to move forward. Inspired by the burrowing behavior of seed-awn and sandfish skink, a horizontal self-burrowing robot is developed. The robot is driven by two augers and stabilized by a fin structure. The robot’s burrowing behavior is studied in a laboratory setting. It is found that rotation and propulsive motion along the axis of the auger’s helical shape significantly reduce granular media’s resistance against horizontal penetration by breaking kinematic symmetry or granular media boundary. Additional thrusting and dragging tests were performed to examine the propulsive and resistive forces and unify the observed burrowing behaviors. The tests revealed that the rotation of an auger not only reduces the resistive force and generates a propulsive force, which is influenced by the auger geometry, rotational speed, and direction. As a result, the burrowing behavior of the robot can be predicted using the geometry-rotation-force relations.
ContributorsShaharear, Md Ragib (Author) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2023
158757-Thumbnail Image.png
Description
August Krogh, a 20th century Nobel Prize winner in Physiology and Medicine, once stated, "for such a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied." What developed to be known as the Krogh Principle,

August Krogh, a 20th century Nobel Prize winner in Physiology and Medicine, once stated, "for such a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied." What developed to be known as the Krogh Principle, has become the cornerstone of bioinspired robotics. This is the realization that solutions to various multifaceted engineering problems lie in nature. With the integration of biology, physics and engineering, the classical approach in solving engineering problems has transformed. Through such an integration, the presented research will address the following engineering solution: maneuverability on and through complex granular and aquatic environments. The basilisk lizard and the octopus are the key sources of inspiration for the anticipated solution. The basilisk lizard is a highly agile reptile with the ability to easily traverse on vast, alternating, unstructured, and complex terrains (i.e. sand, mud, water). This makes them a great medium for pursuing potential solutions for robotic locomotion on such terrains. The octopus, with a nearly soft, yet muscular hydrostat body and arms, is proficient in locomotion and its complex motor functions are vast. Their versatility, "infinite" degrees of freedom, and dexterity have made them an ideal candidate for inspiration in the fields such as soft robotics. Through conducting animal experiments on the basilisk lizard and octopus, insight can be obtained on the question: how does the animal interact with complex granular and aquatic environments so effectively? Following it through by conducting systematic robotic experiments, the capabilities and limitations of the animal can be understood. Integrating the hierarchical concepts observed and learnt through animal and robotic experiments, it can be used towards designing, modeling, and developing robotic systems that will assist humanity and society on a diversified set of applications: home service, health care, public safety, transportation, logistics, structural examinations, aquatic and extraterrestrial exploration, search-and-rescue, environmental monitoring, forestry, and agriculture, just to name a few. By learning and being inspired by nature, there exist the potential to go beyond nature for the greater good of society and humanity.
ContributorsBagheri, Hosain (Author) / Marvi, Hamidreza (Thesis advisor) / Berman, Spring M (Committee member) / DeNardo, Dale F (Committee member) / Emady, Heather N (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2020
158901-Thumbnail Image.png
Description
A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data for the purpose of monitoring coral reef health. It is

A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data for the purpose of monitoring coral reef health. It is designed with an on-board integrated sensor system to support both automated navigation in close proximity to reefs and environmental observation. Additionally, the vehicle can serve as a testbed for future research in the realm of programming for autonomous underwater navigation and data collection, given the open-source simulation and software environment in which it was developed. This thesis presents the motivation for and design components of the new vehicle, a model governing vehicle dynamics, and the results of two proof-of-concept simulation for automated control.
ContributorsGoldman, Alex (Author) / Das, Jnaneshwar (Thesis advisor) / Asner, Greg (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2020