Matching Items (3)
Filtering by

Clear all filters

158901-Thumbnail Image.png
Description
A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data for the purpose of monitoring coral reef health. It is

A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data for the purpose of monitoring coral reef health. It is designed with an on-board integrated sensor system to support both automated navigation in close proximity to reefs and environmental observation. Additionally, the vehicle can serve as a testbed for future research in the realm of programming for autonomous underwater navigation and data collection, given the open-source simulation and software environment in which it was developed. This thesis presents the motivation for and design components of the new vehicle, a model governing vehicle dynamics, and the results of two proof-of-concept simulation for automated control.
ContributorsGoldman, Alex (Author) / Das, Jnaneshwar (Thesis advisor) / Asner, Greg (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2020
158167-Thumbnail Image.png
Description
Presented in this thesis are two projects that fall under the umbrella of magnetically actuated electronics and robotics for medical applications. First, magnetically actuated tunable soft electronics are discussed in Chapter 2. Wearable and implantable soft electronics are clinically available and commonplace. However, these devices can be taken a ste

Presented in this thesis are two projects that fall under the umbrella of magnetically actuated electronics and robotics for medical applications. First, magnetically actuated tunable soft electronics are discussed in Chapter 2. Wearable and implantable soft electronics are clinically available and commonplace. However, these devices can be taken a step further to improve the lives of their users by adding remote tunability. The four electric units tested were planar inductors, axial inductors, capacitors and resistors. The devices were made of polydimethylsiloxane (PDMS) for flexibility with copper components for conductivity. The units were tuned using magnets and mobile components comprised of iron filings and ferrofluid. The characteristic properties examined for each unit are as follows: inductance and quality factor (Q-factor) for inductors, capacitance and Q-factor for capacitors, and impedance for resistors. There were two groups of tuning tests: quantity effect and position effect of the mobile component. The position of the mobile component had a larger effect on each unit, with 20-23% change in inductance for inductors (from 3.31 µH for planar and 0.44 µH for axial), 12.7% from 2.854 pF for capacitors and 185.3% from 0.353 kΩ for resistors.

Chapter 3 discusses a magnetic needle tracking device with operative assistance from a six degree-of-freedom robotic arm. Traditional needle steering faces many obstacles such as torsional effects, buckling, and small radii of curvature. To improve upon the concept, this project uses permanent magnets in parallel with a tracking system to steer and determine the position and orientation of the needle in real time. The magnet configuration is located at the end effector of the robotic arm. The trajectory of the end effector depends on the needle’s path, and vice versa. The distance the needle travels inside the workspace is tracked by a direct current (DC) motor, to which the needle is tethered. Combining this length with the pose of the end effector, the position and orientation of the needle can be calculated. Simulation of this tracking device has shown the functionality of the system. Testing has been done to confirm that a single magnet pulls the needle through the phantom tissue.
ContributorsEdwards, Dakota (Author) / Marvi, Hamidreza (Thesis advisor) / Lee, Hyunglae (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2020
158169-Thumbnail Image.png
Description
Needle steering is an extension of manually inserted needles that allows for maneuverability within the body in order to avoid anatomical obstacles and correct for undesired placement errors. Research into needle steering predominantly exploits interaction forces between a beveled tip and the medium, controlling the direction of forces by

Needle steering is an extension of manually inserted needles that allows for maneuverability within the body in order to avoid anatomical obstacles and correct for undesired placement errors. Research into needle steering predominantly exploits interaction forces between a beveled tip and the medium, controlling the direction of forces by applying rotations at the base of the needle shaft in order to steer. These systems are either manually or robotically advanced, but have not achieved clinical relevance due to a multitude of limitations including compression effects in the shaft that cause undesired tissue slicing, torsional friction forces and deflection at tissue boundaries that create control difficulties, and a physical design that inherently restricts the workspace. While most improvements into these systems attempt to innovate the needle design or create tissue models to better understand interaction forces, this paper discusses a promising alternative: magnetic needle steering. Chapter 2 discusses an electromagnetic needle steering system that overcomes all aforementioned issues with traditional steering. The electromagnetic system advances the needle entirely magnetically so it does not encounter any compression or torsion effects, it can steer across tissue-interfaces at various angles of attack (90, 45, 22.5°) with root-mean-square error (RMSE) of 1.2 mm, achieve various radii of curvature as low as 10.2 mm with RMSE of 1.4 mm, and steer along complex 3D paths with RMSE as low as 0.4 mm. Although these results do effectively prove the viability of magnetic steering, the electromagnetic system is limited by a weak magnetic field and small 33mm cubic workspace. In order to overcome these limitations, the use of permanent magnets, which can achieve magnetic forces an order of magnitude larger than similarly sized electromagnetics, is investigated. The needle will be steered toward a permanent magnet configuration that is controlled by a 6 degree-of-freedom robotic manipulator. Three magnet configurations were investigated, two novel ideas that attempt to create local maximum points that stabilize the needle relative to the configuration, and one that pulls the needle toward a single magnet. Ultimately, the last design was found to be most viable to demonstrate the effectiveness of magnetic needle steering.
ContributorsPetras, Alex (Author) / Marvi, Hamidreza (Thesis advisor) / Yong, Sze Z. (Committee member) / Ross, Heather M. (Committee member) / Arizona State University (Publisher)
Created2020