Matching Items (3)
Filtering by

Clear all filters

133792-Thumbnail Image.png
Description
A chimeric, humanized monoclonal antibody that recognizes a highly conserved fusion loop found on flaviviruses was constructed with a geminiviral replicon and transiently expressed in Nicotiana benthamiana plants through Agrobacterium tumefaciens infiltration. Characterization and expression studies were then conducted to confirm correct assembly of the antibody. Once the antibody was

A chimeric, humanized monoclonal antibody that recognizes a highly conserved fusion loop found on flaviviruses was constructed with a geminiviral replicon and transiently expressed in Nicotiana benthamiana plants through Agrobacterium tumefaciens infiltration. Characterization and expression studies were then conducted to confirm correct assembly of the antibody. Once the antibody was purified, an ELISA was conducted to validate that the antibody was able to bind to the flavivirus fusion loop.
ContributorsPardhe, Mary (Author) / Mason, Hugh (Thesis director) / Chen, Qiang (Committee member) / Mor, Tsafrir (Committee member) / School of Life Sciences (Contributor) / Department of Information Systems (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154884-Thumbnail Image.png
Description
Measles is a contagious, vaccine-preventable disease that continues to be the leading

cause of death in children younger than the age of 5 years. While the introduction of the Measles, Mumps, and Rubella vaccine (MMR) has significantly decreased morbidity and mortality rates worldwide, vaccine coverage is highly variable across global regions.

Measles is a contagious, vaccine-preventable disease that continues to be the leading

cause of death in children younger than the age of 5 years. While the introduction of the Measles, Mumps, and Rubella vaccine (MMR) has significantly decreased morbidity and mortality rates worldwide, vaccine coverage is highly variable across global regions. Current diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in serum. Commercially available Diamedix Immunosimplicity® Measles IgG test kit has been shown to have 91.1% sensitivity and 93.8% specificity, with a positive predictive value of 88.7% and a negative predictive value of 90.9% on the basis of a PRN titer of 120. There is an increasing need for rapid screening for measles specific immunity in outbreak settings. This study aims to develop a rapid molecular diagnostic assay to detect IgG reactive to three individual measles virus (MeV) proteins.

Measles virus (MeV) genes were subcloned into the pJFT7_nGST vector to generate N- terminal GST fusion proteins. Single MeV cistrons were expressed using in vitro transcription/translation (IVTT) with human cell lysate. Expression of GST-tagged proteins was measured with mouse anti-GST mAb and sheep anti-mouse IgG. Relative light units (RLUs) as luminescence was measured. Antibodies to MeV antigens were measured in 40 serum samples from healthy subjects.

Protein expression of three MeV genes of interest was measured in comparison with vector control and statistical significance was determined using the Student’s t-test (p<0.05). N expressed at the highest level with an average RLU value of 3.01 x 109 (p<0.001) and all proteins were expressed at least 50% greater than vector control (4.56 x 106 RLU). 36/40 serum samples had IgG to N (Ag:GST ratio>1.21), F (Ag:GST ratio>1.92), or H (Ag:GST ratio> 1.23).

These data indicate that the in vitro expression of MeV antigens, N, F, and H, were markedly improved by subcloning into pJFT7_nGST vector to generate N-terminal GST fusion proteins. The expression of single MeV genes N, F and H, are suitable antigens for serologic capture analysis of measles-specific antibodies. These preliminary data can be used to design a more intensive study to explore the possibilities of using these MeV antigens as a diagnostic marker.
ContributorsMushtaq, Zuena (Author) / Anderson, Karen (Thesis advisor) / Blattman, Joseph (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2016
168416-Thumbnail Image.png
Description

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable,

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable, economically viable to produce, and stable. These criteria are met by the recombinant immune complex (RIC) universal vaccine platform when produced in plants. The RIC platform is modeled after naturally occurring immune complexes that form when an antibody, a component of the immune system that recognizes protein structures or sequences, binds to its specific antigen, a molecule that causes an immune response. In the RIC platform, a well-characterized antibody is linked via its heavy chain, to an antigen tagged with the antibody-specific epitope. The RIC antibody binds to the epitope tags on other RIC molecules and forms highly immunogenic complexes. My research has primarily focused on the optimization of the RIC platform. First, I altered the RIC platform to enable an N-terminal antigenic fusion instead of the previous C-terminal fusion strategy. This allowed the platform to be used with antigens that require an accessible N-terminus. A mouse immunization study with a model antigen showed that the fusion location, either N-terminal or C-terminal, did not impact the immune response. Next, I studied a synergistic response that was seen upon co-delivery of RIC with virus-like particles (VLP) and showed that the synergistic response could be produced with either N-terminal or C-terminal RIC co-delivered with VLP. Since RICs are inherently insoluble due to their ability to form complexes, I also examined ways to increase RIC solubility by characterizing a panel of modified RICs and antibody-fusions. The outcome was the identification of a modified RIC that had increased solubility while retaining high immunogenicity. Finally, I modified the RIC platform to contain multiple antigenic insertion sites and explored the use of bioinformatic tools to guide the design of a broadly protective vaccine.

ContributorsPardhe, Mary (Author) / Mason, Hugh S (Thesis advisor) / Chen, Qiang (Committee member) / Mor, Tsafrir (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2021