Matching Items (14)
Filtering by

Clear all filters

136252-Thumbnail Image.png
Description
This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a

This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a system for quantitative measurement of TBI and its relative magnitude. Through a method of artificial evolution/selection called phage display, an antibody that binds highly specifically to a post-TBI upregulated brain chondroitin sulfate proteoglycan called neurocan has been identified. As TG1 Escheria Coli bacteria were infected with KM13 helper phage and M13 filamentous phage in conjunction, monovalent display of antibody fragments (ScFv) was performed. The ScFv bind directly to the neurocan and from screening, phage that produced ScFv's with higher affinity and specificity to neurocan were separated and purified. Future research aims to improve the ScFv characteristics through increased screening toward neurocan. The identification of a highly specific antibody could lead to improved targeting of neurocan post-TBI in-vivo, aiding researchers in quantitatively defining TBI by visualizing its magnitude.
ContributorsSeelig, Timothy Scott (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
173138-Thumbnail Image.png
Description

Emil von Behring researched treatments for the common childhood disease diphtheria in Germany in the 1890s and early 1900s. Diphtheria is a lethal disease that infected approximately 40,000 people in Germany between 1886 and 1888 with a general mortality rate of twenty-five percent. Behring investigated treatment of diphtheria using serum

Emil von Behring researched treatments for the common childhood disease diphtheria in Germany in the 1890s and early 1900s. Diphtheria is a lethal disease that infected approximately 40,000 people in Germany between 1886 and 1888 with a general mortality rate of twenty-five percent. Behring investigated treatment of diphtheria using serum therapy, which is an alternative to vaccination that uses protective agents from other people’s blood to defend a patient against disease. Behring termed those protective agents antitoxins. He received the first Nobel Prize in Physiology or Medicine for his work on serum therapy, which was one of the first Nobel Prizes given in the field of immunology. Additionally, Behring researched active vaccination as another way to protect patients from diphtheria. Behring’s studies lowered the mortality rate of diphtheria in Germany through serum therapy and vaccination, especially since vaccination confers protection to both mother and infant during pregnancy and after birth.

Created2022-12-01
173139-Thumbnail Image.png
Description

In 2014, Flor M. Munoz and colleagues published “Safety and Immunogenicity of Tetanus Diphtheria and Acellular Pertussis (Tdap) Immunization During Pregnancy in Mothers and Infants: A Randomized Clinical Trial,” hereafter “Tdap Immunization During Pregnancy,” in the Journal of the American Medical Association. The authors conducted a study to determine how

In 2014, Flor M. Munoz and colleagues published “Safety and Immunogenicity of Tetanus Diphtheria and Acellular Pertussis (Tdap) Immunization During Pregnancy in Mothers and Infants: A Randomized Clinical Trial,” hereafter “Tdap Immunization During Pregnancy,” in the Journal of the American Medical Association. The authors conducted a study to determine how Tdap immunization affected the mother and infant’s immune response to the common childhood diseases tetanus, diphtheria, and pertussis. They found that Tdap immunization did not lead to an increased risk of adverse health events. Furthermore, maternal Tdap immunization provided the infant with protective levels of pertussis antibodies after delivery and did not affect the infant differently from the DTaP vaccination series, which is the version of Tdap for young children. The authors’ findings in “Tdap Immunization During Pregnancy” supported the United States Centers for Disease Control and Prevention’s, or CDC’s, recommendation for pregnant women to receive the Tdap vaccine to prevent disease in mother and infant.

Created2022-12-15
Description

In 2014, Flor M. Munoz and colleagues published “Safety and Immunogenicity of Tetanus Diphtheria and Acellular Pertussis (Tdap) Immunization During Pregnancy in Mothers and Infants: A Randomized Clinical Trial,” hereafter “Tdap Immunization During Pregnancy,” in the Journal of the American Medical Association. The authors conducted a study to determine how

In 2014, Flor M. Munoz and colleagues published “Safety and Immunogenicity of Tetanus Diphtheria and Acellular Pertussis (Tdap) Immunization During Pregnancy in Mothers and Infants: A Randomized Clinical Trial,” hereafter “Tdap Immunization During Pregnancy,” in the Journal of the American Medical Association. The authors conducted a study to determine how Tdap immunization affected the mother and infant’s immune response to the common childhood diseases tetanus, diphtheria, and pertussis. They found that Tdap immunization did not lead to an increased risk of adverse health events. Furthermore, maternal Tdap immunization provided the infant with protective levels of pertussis antibodies after delivery and did not affect the infant differently from the DTaP vaccination series, which is the version of Tdap for young children. The authors’ findings in “Tdap Immunization During Pregnancy” supported the United States Centers for Disease Control and Prevention’s, or CDC’s, recommendation for pregnant women to receive the Tdap vaccine to prevent disease in mother and infant.

Created2022-12-16
157123-Thumbnail Image.png
Description
In the recent past, Iraq was considered relatively rich considering its water resources compared to its surroundings. Currently, the magnitude of water resource shortages in Iraq represents an important factor in the stability of the country and in protecting sustained economic development. The need for a practical, applicable, and sustainable

In the recent past, Iraq was considered relatively rich considering its water resources compared to its surroundings. Currently, the magnitude of water resource shortages in Iraq represents an important factor in the stability of the country and in protecting sustained economic development. The need for a practical, applicable, and sustainable river basin management for the Tigris and Euphrates Rivers in Iraq is essential. Applicable water resources allocation scenarios are important to minimize the potential future water crises in connection with water quality and quantity. The allocation of the available fresh water resources in addition to reclaimed water to different users in a sustainable manner is of the urgent necessities to maintain good water quantity and quality.

In this dissertation, predictive water allocation optimization models were developed which can be used to easily identify good alternatives for water management that can then be discussed, debated, adjusted, and simulated in greater detail. This study provides guidance for decision makers in Iraq for potential future conditions, where water supplies are reduced, and demonstrates how it is feasible to adopt an efficient water allocation strategy with flexibility in providing equitable water resource allocation considering alternative resource. Using reclaimed water will help in reducing the potential negative environmental impacts of treated or/and partially treated wastewater discharges while increasing the potential uses of reclaimed water for agriculture and other applications. Using reclaimed water for irrigation is logical and efficient to enhance the economy of farmers and the environment while providing a diversity of crops, especially since most of Iraq’s built or under construction wastewater treatment plants are located in or adjacent to agricultural lands. Adopting an optimization modelling approach can assist decision makers, ensuring their decisions will benefit the economy by incorporating global experiences to control water allocations in Iraq especially considering diminished water supplies.
ContributorsAhmed, Ahmed Abdulrazzaq (Author) / Mays, Larry W. (Thesis advisor) / Fox, Peter (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Muenich, Rebecca (Committee member) / Arizona State University (Publisher)
Created2019
157075-Thumbnail Image.png
Description
The phrase water-energy nexus is commonly used to describe the inherent and critical interdependencies between the electric power system and the water supply systems (WSS). The key interdependencies between the two systems are the power plant’s requirement of water for the cooling cycle and the water system’s need of electricity

The phrase water-energy nexus is commonly used to describe the inherent and critical interdependencies between the electric power system and the water supply systems (WSS). The key interdependencies between the two systems are the power plant’s requirement of water for the cooling cycle and the water system’s need of electricity for pumping for water supply. While previous work has considered the dependency of WSS on the electrical power, this work incorporates into an optimization-simulation framework, consideration of the impact of short and long-term limited availability of water and/or electrical energy.

This research focuses on the water supply system (WSS) facet of the multi-faceted optimization and control mechanism developed for an integrated water – energy nexus system under U.S. National Science Foundation (NSF) project 029013-0010 CRISP Type 2 – Resilient cyber-enabled electric energy and water infrastructures modeling and control under extreme mega drought scenarios. A water supply system (WSS) conveys water from sources (such as lakes, rivers, dams etc.) to the treatment plants and then to users via the water distribution systems (WDS) and/or water supply canal systems (WSCS). Optimization-simulation methodologies are developed for the real-time operation of water supply systems (WSS) under critical conditions of limited electrical energy and/or water availability due to emergencies such as extreme drought conditions, electric grid failure, and other severe conditions including natural and manmade disasters. The coupling between WSS and the power system was done through alternatively exchanging data between the power system and WSS simulations via a program control overlay developed in python.

A new methodology for WDS infrastructural-operational resilience (IOR) computation was developed as a part of this research to assess the real-time performance of the WDS under emergency conditions. The methodology combines operational resilience and component level infrastructural robustness to provide a comprehensive performance assessment tool.

The optimization-simulation and resilience computation methodologies developed were tested for both hypothetical and real example WDS and WSCS, with results depicting improved resilience for operations of the WSS under normal and emergency conditions.
ContributorsKhatavkar, Puneet (Author) / Mays, Larry W. (Thesis advisor) / Vittal, Vijay (Committee member) / Mascaro, Giuseppe (Committee member) / Fox, Peter (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2019
Description
This dissertation presents a new methodology for the sustainable and optimal allocation of water for a river basin management area that maximizes sustainable net economic benefit over the long-term planning horizon. The model distinguishes between short and long-term planning horizons and goals using a short-term modeling component (STM) and a

This dissertation presents a new methodology for the sustainable and optimal allocation of water for a river basin management area that maximizes sustainable net economic benefit over the long-term planning horizon. The model distinguishes between short and long-term planning horizons and goals using a short-term modeling component (STM) and a long term modeling component (LTM) respectively. An STM optimizes a monthly allocation schedule on an annual basis in terms of maximum net economic benefit. A cost of depletion based upon Hotelling’s exhaustible resource theory is included in the STM net benefit calculation to address the non-use value of groundwater. An LTM consists of an STM for every year of the long-term planning horizon. Net economic benefits for both use and non-use values are generated by the series of STMs. In addition output from the STMs is measured in terms of sustainability which is quantified using a sustainability index (SI) with two groups of performance criteria. The first group measures risk to supply and is based on demand-supply deficits. The second group measures deviations from a target flow regime and uses a modified Hydrologic Alteration (HA) factor in the Range of Variability Approach (RVA). The STM is a linear programming (LP) model formulated in the General Algebraic Modeling System (GAMS) and the LTM is a nonlinear programming problem (NLP) solved using a genetic algorithm. The model is applied to the Prescott Active Management Area in north-central Arizona. Results suggest that the maximum sustainable net benefit is realized with a residential population and consumption rate increase in some areas, and a reduction in others.
ContributorsOxley, Robert Louis (Author) / Mays, Larry (Thesis advisor) / Fox, Peter (Committee member) / Johnson, Paul (Committee member) / Murray, Alan (Committee member) / Arizona State University (Publisher)
Created2015
155850-Thumbnail Image.png
Description
This study was designed to provide insight into microbial transport kinetics which might be applied to bioremediation technology development and prevention of groundwater susceptibility to pathogen contamination. Several pilot-scale experiments were conducted in a saturated, 2 dimensional, packed porous media tank to investigate the transport of Escherichia coli bacteria, P22

This study was designed to provide insight into microbial transport kinetics which might be applied to bioremediation technology development and prevention of groundwater susceptibility to pathogen contamination. Several pilot-scale experiments were conducted in a saturated, 2 dimensional, packed porous media tank to investigate the transport of Escherichia coli bacteria, P22 bacteriophage, and a visual tracer and draw comparisons and/or conclusions. A constructed tank was packed with an approximate 3,700 cubic inches (in3) of a fine grained, homogeneous, chemically inert sand which allowed for a controlled system. Sampling ports were located at 5, 15, 25, and 25 vertical inches from the base of the 39 inch saturated zone and were used to assess the transport of the selected microorganisms. Approximately 105 cells of E. coli or P22 were injected into the tank and allowed to move through the media at approximately 10.02 inches per day. Samples were collected intermittently after injection based off of an estimated sampling schedule established from the visual tracer.

The results suggest that bacteriophages pass through soil faster and with greater recovery than bacteria. P22 in the tank reservoir experienced approximately 1 log reduction after 36 hours. After 85 hours, P22 was still detected in the reservoir after experiencing a 2 log reduction from the start of the experiment. E. coli either did not reach the outlet or died before sampling, while P22 was able to be recovered. Bacterial breakthrough curves were produced for the microbial indicators and illustrate the peak concentrations found for each sampling port. For E. coli, concentrations at the 5 inch port peaked at a maximum of 5170 CFU/mL, and eventually at the 25 inch port at a maximum of 90 CFU/mL. It is presumed that E. coli might have experienced significant filtration, straining and attachment, while P22 might have experienced little adsorption and instead was transported rapidly in long distances and was able to survive for the duration of the experiment.
ContributorsAcosta, Jazlyn Cauren (Author) / Abbaszadegan, Morteza (Thesis advisor) / Dahlen, Paul (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2017
156007-Thumbnail Image.png
Description
Granular activated carbon (GAC) is effectively used to remove natural organic matter (NOM) and to assist in the removal of disinfection byproducts (DBPs) and their precursors. However, operation of GAC is cost- and labor-intensive due to frequent media replacement. Optimizing the use of GAC is necessary to ensure treatment efficiency

Granular activated carbon (GAC) is effectively used to remove natural organic matter (NOM) and to assist in the removal of disinfection byproducts (DBPs) and their precursors. However, operation of GAC is cost- and labor-intensive due to frequent media replacement. Optimizing the use of GAC is necessary to ensure treatment efficiency while reducing costs. This dissertation presents four strategies to reduce improve GAC usage while reducing formation of DBPs. The first part of this work adopts Rapid Small Scale Tests (RSSCTs) to evaluate removal of molecular weight fractions of NOM, characterized using size exclusion chromatography (SECDOC). Total trihalomethanes (TTHM), haloacetic acids (HAA5) and haloacetonitriles (HAN) formation were quantified after treatment with GAC. Low MW NOM was removed preferentially in the early bed volumes, up until exhaustion of available adsorption sites. DBP formation potential lowered with DOC removal. Chlorination prior to GAC is investigated in the second part of this work as a strategy to increase removal of NOM and DBP precursors. Results showed lower TTHM formation in the effluent of the GAC treatment when pre-chlorination was adopted, meaning this strategy could help optimize and extend the bed life if GAC filters. The third part of this work investigates in-situ GAC regeneration as an alternative to recover adsorption capacity of field-spent GAC that could potentially offer new modes of operation for water treatment facilities while savng costs with reactivation of spent GAC in an external facility. Field-spent GACs were treated with different oxidant solutions and recovery in adsorption capacity was evaluated for NOM and for two micro pollutants. Recovery of GAC adsorption capacity was not satisfactory for most of conditions evaluated. This indicates that in-situ GAC regeneration could be more effective when the adsorbates are present at high concentrations. Lastly, this work investigates the impact of low molecular weight polyDADMAC on N-nitrosodimethylamine (NDMA) formation. Water treatment facilities rely on polyDADMAC as a coagulant aid to comply with NOM removal and turbidity requirements. Since polymer-derived NDMA precursors are not removed by GAC, it is essential to optimize the use and synthesis of polyDADMAC to reduce NDMA precursors during water treatment.
ContributorsFischer, Natalia (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2017
158705-Thumbnail Image.png
Description
Water reuse and nutrient recovery are long-standing strategies employed in agricultural systems. This is especially true in dry climates where water is scarce, and soils do not commonly contain the nutrients or organic matter to sustain natural crop growth. Agriculture accounts for approximately 70% of all freshwater withdrawals globally. This

Water reuse and nutrient recovery are long-standing strategies employed in agricultural systems. This is especially true in dry climates where water is scarce, and soils do not commonly contain the nutrients or organic matter to sustain natural crop growth. Agriculture accounts for approximately 70% of all freshwater withdrawals globally. This essential sector of society therefore plays an important role in ensuring water sources are maintained and that the food system can remain resilient to dwindling water resources. The purpose of this research is to quantify the benefits of organic residuals and reclaimed water use in agriculture in arid environments through the development of a systematic review and case study. Data from the systematic review was extracted to be applied to a case study identifying the viability and benefits of organic residuals on arid agriculture. Results show that the organic residuals investigated do have quantitative benefits to agriculture such as improving soil health, reducing the need for conventional fertilizers, and reducing irrigation needs from freshwater sources. Some studies found reclaimed water sources to be of better quality than local freshwater sources due to environmental factors. Biosolids and manure are the most concentrated of the organic residuals, providing nutrient inputs and enhancing long-term soil health. A conceptual model is presented to demonstrate the quantitative benefits of using a reclaimed water source in Pinal County, Arizona on a hypothetical crop of cotton. A goal of the model is to take implied nutrient inputs from reclaimed water sources and quantify them against standard practice of using irrigated groundwater and conventional fertilizers on agricultural operations. Pinal County is an important case study area where farmers are facing cuts to their water resources amid a prolonged drought in the Colorado River Basin. The model shows that a reclaimed water source would be able to offset all freshwater and conventional fertilizer use, but salinity in reclaimed water sources would force a need for additional irrigation in the form of a large leaching fraction. This review combined with the case study demonstrate the potential for nutrient and water reuse, while highlighting potential barriers to address.
ContributorsKrukowski, William Lee (Author) / Muenich, Rebecca (Thesis advisor) / Williams, Clinton (Committee member) / Hamilton, Kerry (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2020