Matching Items (5)
136661-Thumbnail Image.png
Description
A series of mitochondria targeting probes was synthesized for the purpose of exploring the feasibility of a mitochondria targeting fluorescent sensor. Of the probes, the probe with a two carbon spacer showed the best co-localization from staining with the established MitoTracker Red® FM, indicating a potential development of the probe

A series of mitochondria targeting probes was synthesized for the purpose of exploring the feasibility of a mitochondria targeting fluorescent sensor. Of the probes, the probe with a two carbon spacer showed the best co-localization from staining with the established MitoTracker Red® FM, indicating a potential development of the probe into mitochondria targeting sensor. However, cytotoxicity was observed for the probe with a six carbon spacer. Three additional mitochondria targeting fluorescent probes of longer spacer groups were synthesized, but the cytotoxicity was not observed to be as high as that of the probe with a two carbon spacer. The cytotoxicity was characterized to be that of caspase dependent cell death. To screen for a possible effect on apoptosis due to the mitochondrial probe, three fluorescent fusion proteins binding the anti-apoptotic proteins were designed and expressed. Each purified fusion protein was then incubated with the cytotoxic mitochondrial probe, and the mixture was isolated by running an affinity column. The fluorescence analysis of eluted fractions showed preliminary data of possible interaction between the protein and the mitochondrial probe.
ContributorsLee, Fred (Author) / Meldrum, Deirdre R. (Thesis director) / Tian, Yanqing (Committee member) / Zhang, Liqiang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-12
133470-Thumbnail Image.png
Description
The human hairless gene (HR) encodes a 130 kDa transcription factor that is primarily expressed in the brain and skin. In the promoter and 5'-untranslated regions (5'-UTR) of HR, there are three putative consensus p53 responsive elements (p53RE). p53 is a tumor suppressor protein that regulates cell proliferation, apoptosis, and

The human hairless gene (HR) encodes a 130 kDa transcription factor that is primarily expressed in the brain and skin. In the promoter and 5'-untranslated regions (5'-UTR) of HR, there are three putative consensus p53 responsive elements (p53RE). p53 is a tumor suppressor protein that regulates cell proliferation, apoptosis, and other cell functions. The p53 protein, a known tumor suppressor, acts as a transcription factor and binds to DNA p53REs to activate or repress transcription of the target gene. In general, the p53 binding sequence is 5'-RRRCWWGYYY-3' where W is A or T, and R and Y are purines or pyrimidines, respectively. However, even if the p53 binding sequence does not match the consensus sequence, p53 protein might still be able to bind to the response element. The intent of this investigation was to identify and characterize the p53REs in the promoter and 5'-UTR of HR. If the three p53REs (p53RE1, p53RE2, and p53RE3) are functional, then p53 can bind there and might regulate HR gene expression. The first aim for this thesis was to clone the putative p53REs into a luciferase reporter and to characterize the transcription of these p53REs in glioblastoma (U87 MG) and human embryonic kidney (HEK293) cell lines. Through the transactivation assay, it was discovered that p53REs 2 and 3 were functional in HEK293, but none of the response elements were functional in U87 MG. Since p53 displayed a different regulatory capacity of HR expression in HEK293 and U87 MG cells, the second aim was to verify whether the p53REs are mutated in GBM U87 MG cells by genomic DNA sequencing.
ContributorsMaatough, Anas (Author) / Neisewander, Janet (Thesis director) / Hsieh, Jui-Cheng (Committee member) / Goldstein, Elliott (Committee member) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
173233-Thumbnail Image.png
Description

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain how embryonic cells function during development. In the early 1980s, Illmensee faced accusations of fraud when others were unable to replicate the results of his experiments with cloned mouse embryos. Illmensee also worked with human embryos, investigating how embryos split to form identical twins.

Created2017-02-26
172864-Thumbnail Image.png
Description

In the 1990s, Ian Wilmut, Jim McWhir, and Keith Campbell performed experiments while working at the Roslin Institute in Roslin, Scotland. Wilmut, McWhir, and Campbell collaborated with Angelica Schnieke and Alex J. Kind at PPL Therapeutics in Roslin, a company researching cloning and genetic manipulation for livestock. Their experiments

In the 1990s, Ian Wilmut, Jim McWhir, and Keith Campbell performed experiments while working at the Roslin Institute in Roslin, Scotland. Wilmut, McWhir, and Campbell collaborated with Angelica Schnieke and Alex J. Kind at PPL Therapeutics in Roslin, a company researching cloning and genetic manipulation for livestock. Their experiments resulted in several sheep being born in July 1996, one of which was a sheep named Dolly born 5 July 1996. Dolly was the first sheep cloned and developed from the nuclei of fully differentiated adult cells, rather than from the nuclei of early embryonic cells. They published their results in Viable Offspring Derived from Fetal and Adult Mammalian Cells (abbreviated Viable Offspring) on 27 February 1997.

Created2014-10-10
132132-Thumbnail Image.png
Description
Porphyromonas gingivalis (P. gingivalis) is an oral pathogen known for causing periodontal diseases like periodontitis and alveolar bone loss. In this study, we investigate the molecular mechanisms of P. gingivalis with focus of the molecular cloning of the two DNA strains of the bacteria PGN_1740 and PGN_0012 in the

Porphyromonas gingivalis (P. gingivalis) is an oral pathogen known for causing periodontal diseases like periodontitis and alveolar bone loss. In this study, we investigate the molecular mechanisms of P. gingivalis with focus of the molecular cloning of the two DNA strains of the bacteria PGN_1740 and PGN_0012 in the Ampr pTCow. PGN_1740 is an RNA polymerase ECF-type sigma factor used for transcription. PGN_0012 is a two-component system regulator gene that is important in signal transduction. We demonstrated the cloning mechanism through transformation and confirmed the results through gel electrophoresis and using a positive transformant as a control. The process of cloning the DNA inserts into the bacteria followed a polymerase chain reaction for the amplification of the DNA fragments, digestion of the plasmid and DNA fragments with the restriction endonucleases (BamHI and HindIII), ligation and finally heat shock transformation are presented in this thesis. The effectiveness of these procedures was observed through agarose gel electrophoresis and ethanol precipitation for the purification of the PCR products. In this investigation, we discuss molecular and biological characterization of the P. gingivalis bacteria in regard to cloning and ampicillin resistance.
ContributorsOkeyo, Diana (Author) / Shi, Yixin (Thesis director) / Liu, Wei (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05