Matching Items (12)
Filtering by

Clear all filters

151721-Thumbnail Image.png
Description
Frequency effects favoring high print-frequency words have been observed in frequency judgment memory tasks. Healthy young adults performed frequency judgment tasks; one group performed a single task while another group did the same task while alternating their attention to a secondary task (mathematical equations). Performance was assessed by correct and

Frequency effects favoring high print-frequency words have been observed in frequency judgment memory tasks. Healthy young adults performed frequency judgment tasks; one group performed a single task while another group did the same task while alternating their attention to a secondary task (mathematical equations). Performance was assessed by correct and error responses, reaction times, and accuracy. Accuracy and reaction times were analyzed in terms of memory load (task condition), number of repetitions, effect of high vs. low print-frequency, and correlations with working memory span. Multinomial tree analyses were also completed to investigate source vs. item memory and revealed a mirror effect in episodic memory experiments (source memory), but a frequency advantage in span tasks (item memory). Interestingly enough, we did not observe an advantage for high working memory span individuals in frequency judgments, even when participants split their attention during the dual task (similar to a complex span task). However, we concluded that both the amount of attentional resources allocated and prior experience with an item affect how it is stored in memory.
ContributorsPeterson, Megan Paige (Author) / Azuma, Tamiko (Thesis advisor) / Gray, Shelley (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2013
156069-Thumbnail Image.png
Description
Military veterans have a significantly higher incidence of mild traumatic brain injury (mTBI), depression, and Post-traumatic stress disorder (PTSD) compared to civilians. Military veterans also represent a rapidly growing subgroup of college students, due in part to the robust and financially incentivizing educational benefits under the Post-9/11 GI Bill. The

Military veterans have a significantly higher incidence of mild traumatic brain injury (mTBI), depression, and Post-traumatic stress disorder (PTSD) compared to civilians. Military veterans also represent a rapidly growing subgroup of college students, due in part to the robust and financially incentivizing educational benefits under the Post-9/11 GI Bill. The overlapping cognitively impacting symptoms of service-related conditions combined with the underreporting of mTBI and psychiatric-related conditions, make accurate assessment of cognitive performance in military veterans challenging. Recent research findings provide conflicting information on cognitive performance patterns in military veterans. The purpose of this study was to determine whether service-related conditions and self-assessments predict performance on complex working memory and executive function tasks for military veteran college students. Sixty-one military veteran college students attending classes at Arizona State University campuses completed clinical neuropsychological tasks and experimental working memory and executive function tasks. The results revealed that a history of mTBI significantly predicted poorer performance in the areas of verbal working memory and decision-making. Depression significantly predicted poorer performance in executive function related to serial updating. In contrast, the commonly used clinical neuropsychological tasks were not sensitive service-related conditions including mTBI, PTSD, and depression. The differing performance patterns observed between the clinical tasks and the more complex experimental tasks support that researchers and clinicians should use tests that sufficiently tax verbal working memory and executive function when evaluating the subtle, higher-order cognitive deficits associated with mTBI and depression.
ContributorsGallagher, Karen Louise (Author) / Azuma, Tamiko (Thesis advisor) / Liss, Julie (Committee member) / Lavoie, Michael (Committee member) / Arizona State University (Publisher)
Created2017
133028-Thumbnail Image.png
Description
Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.
ContributorsMcguffin, Brianna Jean (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134048-Thumbnail Image.png
Description
Recognition memory is examined by exposing a person to a stimulus and later prompting them with the same stimulus to examine their ability to accurately acknowledge that the stimulus was previously encountered (Kahana, 2012). In recognition memory, confidence ratings are taken during the testing phase to assess how confident the

Recognition memory is examined by exposing a person to a stimulus and later prompting them with the same stimulus to examine their ability to accurately acknowledge that the stimulus was previously encountered (Kahana, 2012). In recognition memory, confidence ratings are taken during the testing phase to assess how confident the participant is that the old-new judgment that they just made is accurate (Busey et al., 2000). Confidence is a metacognitive assessment about the accuracy of perception of decision making based on the amount, speed, and clarity of thoughts that come to mind (Dunlosky and Metcalfe, 2008). The goal of the current study is to better understand how assessing recognition memory using a variety of test procedures influences memory accuracy using the signal detection theory and adding multiple confidence scales that vary in granularity. Based on the previous literature, it is hypothesized that; 1) tasks ordered sequentially will produce greater recognition accuracy (d') than the simultaneous (dual task) condition; 2) confidence scale of 3 points will produce a larger d' than the 7 point scale, and the 7 point scale will produce a larger d' than the 100 point scale; and 3) task mode (ordered vs. sequenced) will interact with confidence scale granularity to predict memory accuracy, such that sequential judgments lessen demands on working memory that come from maintaining an increasing number of decision criteria in comparison to the dual task. Results indicated all hypotheses were not upheld. The findings suggest that taxing working memory may not affect decisional accuracy on a recognition task incorporating confidence judgments.
ContributorsSullivan, Krysten Jennifer (Author) / Brewer, Gene (Thesis director) / Blais, Chris (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137833-Thumbnail Image.png
Description
Previous research has yielded an equivocal answer as to whether speaking aloud while performing intelligence tasks improves, impairs, or has no effect on performance. Some studies show that it impairs performance while others show it aids performance. In the studies in which speaking aloud has been shown to help, only

Previous research has yielded an equivocal answer as to whether speaking aloud while performing intelligence tasks improves, impairs, or has no effect on performance. Some studies show that it impairs performance while others show it aids performance. In the studies in which speaking aloud has been shown to help, only children and older adults benefitted. The present study investigated whether college-aged students benefit from speaking aloud while performing a fluid intelligence test. Subjects performed a battery of working memory and intelligence tasks silently. Once they had completed each task, the participants took them again, though this time they spoke aloud while completing the tests. Results showed that subjects did insignificantly worse on the working memory tests when speaking aloud. However, subjects performed significantly better on the measures of fluid intelligence while speaking aloud as opposed to doing them silently. At an individual differences level, low working memory capacity participants benefited more from speaking aloud than the high working memory ones. Finally, we found a positive correlation between working memory scores and fluid intelligence scores, offering further evidence that the two constructs are related, yet different.
ContributorsRice, Z. Douglas (Author) / Brewer, Gene (Thesis director) / Duch, Carsten (Committee member) / Ball, Hunter (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
Description

Pain has been found in previous research to have a noticeable effect on people’s ability to perform creative tasks. While limited studies in this field exist, most of this work has focused on convergent thinking through the use of compound remote associates tasks (CRAT). In order to investigate how acute

Pain has been found in previous research to have a noticeable effect on people’s ability to perform creative tasks. While limited studies in this field exist, most of this work has focused on convergent thinking through the use of compound remote associates tasks (CRAT). In order to investigate how acute pain might affect divergent creative cognition involving a wider answer space, the current study was conducted using an alternate uses task (AUT) during an algometer-based pain intervention. It was found that acute pain did not have a significant effect on accuracy in the CRAT nor on problem solving abilities in the AUT but notably, participants in the pain condition were more likely to say that they solved problems in the CRAT through insight rather than by an analytical approach. This work demonstrates the need for more research in this field to better understand the relationship between creative cognition and pain.

ContributorsSchmitz, Nicholas (Author) / Brewer, Gene (Thesis director) / Torres, Alexis (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2023-05
189268-Thumbnail Image.png
Description
Behavioral, electrophysiological, and neuroimaging evidence has demonstrated that multiple object tracking (MOT) tasks draw upon visual perception, attention, and working memory cognitive processes. Functional neuroimaging studies identified the middle temporal visual area (MT+/V5) as one of several brain regions associated with MOT in humans. MT+/V5 is thought to be responsible

Behavioral, electrophysiological, and neuroimaging evidence has demonstrated that multiple object tracking (MOT) tasks draw upon visual perception, attention, and working memory cognitive processes. Functional neuroimaging studies identified the middle temporal visual area (MT+/V5) as one of several brain regions associated with MOT in humans. MT+/V5 is thought to be responsible for processing motion from visual information, regulating smooth pursuit eye movements, and encoding memory for motion. However, it is unclear how MT+/V5 interacts with attention and working memory performance processes during MOT. To investigate this question, the right MT+/V5 region was identified in 14 neurotypical subjects using structural magnetic resonance imaging (sMRI). The right MT+/V5 was stimulated using intermittent theta-burst stimulation (iTBS), continuous theta-burst stimulation (cTBS), and sham transcranial magnetic stimulation (TMS) using a within-subjects design. Average MOT performance was measured before and 5-min, 30-min, and 60-min after each stimulation protocol. There was no significant difference in average MOT performance across time, regardless of the stimulation condition.
ContributorsAlucard, Myles (Author) / Duran, Nicholas (Thesis advisor, Committee member) / Brewer, Gene (Thesis advisor, Committee member) / Burleson, Mary (Committee member) / Arizona State University (Publisher)
Created2023
165097-Thumbnail Image.png
Description

The present study researched the systematic biases in working memory and how items interact with each other in working memory. The first goal of the study was to assess whether working memory representations of one another or systematically interact. This was tested by the repulsion bias in the representations. The

The present study researched the systematic biases in working memory and how items interact with each other in working memory. The first goal of the study was to assess whether working memory representations of one another or systematically interact. This was tested by the repulsion bias in the representations. The second goal was to test whether the interaction is modulated by attentional priority. Attended items exhibited a weaker repulsion bias indicating that attention helped to protect the representation from the impact of the un-attended item.The average mean error for the unattended item was 3.68º while for the attended item it was 2.19º. These results are consistent with the hypothesis that items in working memory systematically interact with each other and further suggests that the main theories in working memory that do not assume interactions need to be updated.

ContributorsNierva, Chadwick (Author) / Bae, Gi-Yeul (Thesis director) / Brewer, Gene (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor)
Created2022-05
Description

Students in academic environments receive near-constant feedback about both their own abilities as well as the performance of their peers which could significantly alter their cognitive and learning outcomes. This research investigates whether this social feedback concerning peer ability would improve students’ cognitive performance as measured by a visual working

Students in academic environments receive near-constant feedback about both their own abilities as well as the performance of their peers which could significantly alter their cognitive and learning outcomes. This research investigates whether this social feedback concerning peer ability would improve students’ cognitive performance as measured by a visual working memory (VWM) task. Specifically, the present study provides either positive or negative feedback by means of peers’ performance to test for changes in the quality (memory precision) and the memorability (memory failure rate) of visual working memory representations. The effect of feedback on individual confidence was also examined, as feedback might impact subjective confidence instead of object task performance. Memory precision, participant guess rate, and confidence were compared across both halves of the experiment to determine potential time differences. Participants (N=105) were each administered a 300-trial Delayed Estimation Task to assess visual working memory ability. Participants were asked to rate their confidence in their task response after each trial and were all informed of their own response accuracy after every block of 30 trials. Along with personal feedback after each block, individuals were randomly assigned to view feedback ranking their performance as more or less accurate than other students. Results indicate a nonsignificant effect of peer feedback type on individual memory precision, guess rate, and confidence, which ran contrary to experimental hypotheses. These trends could have occurred due to the presence of participant-based moderating factors that could impact how certain individuals respond to feedback. Additionally, significant increases in both the precision of participants’ memory representations and the rate at which they guessed on the Delayed Estimation Task were observed across time. Together, these findings highlight the need for further research on the nuanced effects of social feedback on neural processing in order to improve student cognition over time.

ContributorsWeiss, Samantha (Author) / Bae, Gi-Yeul (Thesis director, Committee member) / Doane, Leah (Committee member) / Brewer, Gene (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2022-12