Matching Items (7)
Filtering by

Clear all filters

152246-Thumbnail Image.png
Description
Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the

Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the cabin altitude pressure and outside altitude pressure to remove smoke from a flight deck was studied. Existing procedures for flight crews call for a descent down to a safe level for depressurizing the aircraft before taking further action. This process takes crucial time that is critical to the flight crew's ability to keep aware of the situation. This process involves a flight crews coordination and fast thinking to manually take control of the aircraft; which has become increasing more difficult due to the advancements in aircraft automation. Unfortunately this is the only accepted procedure that is used by a flight crew. Other products merely displace the smoke. This displacement is after the time it takes for the flight crew to set up the smoke displacement unit with no guarantee that a flight crew will be able to see or use all of the aircraft's controls. The Negative Pressure System will work automatically and not only use similar components already found on the aircraft, but work in conjunction with the smoke detection system and pressurization system so smoke removal can begin without having to descend down to a lower altitude. In order for this system to work correctly many factors must be taken into consideration. The size of a flight deck varies from aircraft to aircraft, therefore the ability for the system to efficiently remove smoke from an aircraft is taken into consideration. For the system to be feasible on an aircraft the cost and weight must be taken into consideration as the added fuel consumption due to weight of the system may be the limiting factor for installing such a system on commercial aircraft.
ContributorsDavies, Russell (Author) / Rogers, Bradley (Thesis advisor) / Palmgren, Dale (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2013
151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
156323-Thumbnail Image.png
Description
The aviation industry is considered to be the safest when it comes to transportation of people and property. The standards by which companies provide air transportation are held are very high. Nevertheless, a shortage in the number of pilots exists and companies must look for ways to meet demands. One

The aviation industry is considered to be the safest when it comes to transportation of people and property. The standards by which companies provide air transportation are held are very high. Nevertheless, a shortage in the number of pilots exists and companies must look for ways to meet demands. One of the ways to resolve this issue is to introduce unmanned systems on a broader scale – to transport people and property. The public’s perception regarding this issue has not been well documented. This survey identified what the public’s attitude is towards the use of these systems. One hundred fifty-seven people participated in this survey. Statistical analyses were conducted to determine if participant demographics, previous aviation background, and comfort levels were significantly related to various transportation technologies. Those who were comfortable or uncomfortable with self-driving cars kept their same comfort level for other technologies such as drone delivery services. The survey also revealed that the vast majority of respondents did not feel comfortable being a passenger on fully autonomous aircraft. With an overwhelming percentage of society not comfortable with the idea of there being no pilot for the aircraft, it is important for companies working to implement this technology to pay close attention to the public perception of autonomous aircraft.
ContributorsWollert, Matthew Benjamin (Author) / Niemczyk, Mary (Thesis advisor) / Nullmeyer, Robert (Committee member) / Wallmueller, Katherine (Committee member) / Arizona State University (Publisher)
Created2018
154094-Thumbnail Image.png
Description
In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress

In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress the power supply noise and harmonic distortions. The design is using global foundry 0.18um technology.

Based on simulation, the power supply rejection at 200Hz is about -49dB with

81dB dynamic range and -70dB THD+N. The full scale output power can reach as high as 27mW and still keep minimum -68dB THD+N. The system efficiency at full scale is about 82%.
ContributorsBai, Jing (Author) / Bakkaloglu, Bertan (Thesis advisor) / Arizona State University (Publisher)
Created2015
155239-Thumbnail Image.png
Description
Civilian and military use of remotely piloted aircraft (RPA) has significantly increased in recent years. Specifically, the United States Air Force (USAF) has an insatiable demand for RPA operations, that are responsible for fulfilling critical demands in every theater 24 hours a day, 365 days a year (United States Air

Civilian and military use of remotely piloted aircraft (RPA) has significantly increased in recent years. Specifically, the United States Air Force (USAF) has an insatiable demand for RPA operations, that are responsible for fulfilling critical demands in every theater 24 hours a day, 365 days a year (United States Air Force, 2015). Around the clock operations have led to a manning shortage of RPA pilots in the USAF. The USAF MQ-9 “Reaper” Weapons School trains tactical experts and leaders of Airmen skilled in the art of integrated battle-space dominance (United States Air Force, 2015). Weapons Officers for the MQ-9 platform are also critically under-manned, with only 17% of allocated slots filled (B. Callahan, personal communication, January 28, 2016). Furthermore, the leading cause of training attrition has been attributed to lack of critical thinking and problem solving skills (B. Callahan, personal communication, January 28, 2016); skills not directly screened for prior to entering the RPA pilot career field. The proposed study seeks to discover patterns of student behaviors in the brief and debrief process in Weapons School, with the goal of identifying the competencies that distinguish the top students in Weapons School.
ContributorsDriggs, Jade B (Author) / Cooke, Nancy J. (Thesis advisor) / Niemczyk, Mary (Committee member) / Roscoe, Rod (Committee member) / Arizona State University (Publisher)
Created2017
171534-Thumbnail Image.png
Description
As the push to develop ever more efficient aircraft increases, the use of lightweight composite materials to meet this push has increased. Traditional aircraft structural component sizing has revolved around the tensile yield strength of materials. Since composite materials excel in tensile strength, these traditional sizing tools provide overly optimistic

As the push to develop ever more efficient aircraft increases, the use of lightweight composite materials to meet this push has increased. Traditional aircraft structural component sizing has revolved around the tensile yield strength of materials. Since composite materials excel in tensile strength, these traditional sizing tools provide overly optimistic weight reduction predictions. Furthermore, composite materials, in general, are weak under compression and shear. Thus, proper structural sizing yields heavier-than-expected designs. Nevertheless, a wing using thin, lightweight composites in the primary load-bearing components significantly impacts its static aeroelastic properties. These thin structures have a decreased flexural rigidity, making them more susceptible to bending. The bending of swept wings decreases the design wing twist and dihedral angle, potentially impacting the aerodynamic performance and the lateral stability and control, respectively. This work aims to determine what, if any, are the effects of excessive static aeroelastic properties on the aerodynamic performance of an aircraft. Does the perceived gain in the theoretical reduction in structural weight outweigh the potential reduction in aerodynamic performance?
ContributorsWebb, Benjamin David (Author) / Takahashi, Timothy (Thesis advisor) / Herrmann, Marcus (Committee member) / Perez, Ruben (Committee member) / Arizona State University (Publisher)
Created2022