Matching Items (28)
Description

A robust autopilot control system for a ground vehicle was designed, fabricated, and implemented on a remote control car. The autopilot system consists of navigation, guidance, and three controller subsystems. The autopilot’s hardware subsystems are an Arduino processor, GPS receiver, 9 DOF inertial measurement system, and an SD card data

A robust autopilot control system for a ground vehicle was designed, fabricated, and implemented on a remote control car. The autopilot system consists of navigation, guidance, and three controller subsystems. The autopilot’s hardware subsystems are an Arduino processor, GPS receiver, 9 DOF inertial measurement system, and an SD card data logger. A complete system simulation was developed and used to verify the integrated design and algorithms, prior to field testing. The simulation results indicated the system performs as designed, with no anomalous behaviors observed. Simulations were also used to assess and verify each of the three controllers’ robustness qualities. The complete hardware system was field tested and verified fully functional against complex mission scenarios. The system performed as designed, with no anomalous behaviors observed. The system performed successfully in the presence of external disturbances (e.g., rocks, holes, dirt piles in the vehicle’s path), which demonstrated and verified the design is robust. Additional robustness testing consisted of doubling the vehicle’s polar moment of inertia and verifying this did not have any adverse effects on system performance. All the planned tasks were completed and the project’s objectives were met.

ContributorsMarino, Michael (Author) / Takahashi, Timothy (Thesis director) / Singh Grewal, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-12
171662-Thumbnail Image.png
Description
This document is the culmination of research into small unmanned Powered Parachute aerial vehicles. This dissertation serves to provide designers of small systems with an approach to developing a Powered Parachute Unmanned Aerial Vehicle system, guiding them through the basic assumptions, dynamics, and control method. In addition, this dissertation aims

This document is the culmination of research into small unmanned Powered Parachute aerial vehicles. This dissertation serves to provide designers of small systems with an approach to developing a Powered Parachute Unmanned Aerial Vehicle system, guiding them through the basic assumptions, dynamics, and control method. In addition, this dissertation aims to generate a reliable and generalized framework of dynamic design and control methods for autonomous Powered Parachute aircraft. The simulation methods in this paper assist in developing a consistent and robust unmanned system for applying Powered Parachutes as an alternative to multirotor or fixed-wing aircraft.The first chapter serves as a primer on the historical applications of small Unmanned Systems and Powered Parachutes and gives an overview of the requirements for building an autonomous Powered Parachutes; the information within this chapter provides justification background for the second chapter on Powered Parachute dynamics. In the dynamics chapter, equations of motion are derived using engineering first principles. This chapter also discusses alternative methods of improving the control and robustness of the Powered Parachute airframe. The dynamics model is used in all further chapters to develop a generalized control system to operate such a model autonomously. Chapter three of this document focuses on developing simulations from the dynamics described in the previous chapter, laying the groundwork for guidance, navigation, and control algorithms ahead. Chapters four and onwards refine the autonomous control of the Powered Parachute aircraft for real-world scenarios, discussing correction factors and minimizing the errors present in current sensor systems. Chapter five covers the development of an additional adaptive controller which uses a Sigma-Pi Neural network integrated into the final control loop. Chapter six develops advanced control methods for the Powered Parachute airframe, including simulations on a novel proposed thrust vectoring method. Finally, chapter seven discusses results accumulated from testing an experimental prototype.
ContributorsFiedler, Brett (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Phatak, Amar (Committee member) / Arizona State University (Publisher)
Created2022
153717-Thumbnail Image.png
Description
This thesis addresses the design and control of three phase inverters. Such inverters are

used to produce three-phase sinusoidal voltages and currents from a DC source. They

are critical for injecting power from renewable energy sources into the grid. This is

especially true since many of these sources of energy are DC sources

This thesis addresses the design and control of three phase inverters. Such inverters are

used to produce three-phase sinusoidal voltages and currents from a DC source. They

are critical for injecting power from renewable energy sources into the grid. This is

especially true since many of these sources of energy are DC sources (e.g. solar

photovoltaic) or need to be stored in DC batteries because they are intermittent (e.g. wind

and solar). Two classes of inverters are examined in this thesis. A control-centric design

procedure is presented for each class. The first class of inverters is simple in that they

consist of three decoupled subsystems. Such inverters are characterized by no mutual

inductance between the three phases. As such, no multivariable coupling is present and

decentralized single-input single-output (SISO) control theory suffices to generate

acceptable control designs. For this class of inverters several families of controllers are

addressed in order to examine command following as well as input disturbance and noise

attenuation specifications. The goal here is to illuminate fundamental tradeoffs. Such

tradeoffs include an improvement in the in-band command following and output

disturbance attenuation versus a deterioration in out-of-band noise attenuation.

A fundamental deficiency associated with such inverters is their large size. This can be

remedied by designing a smaller core. This naturally leads to the second class of inverters

considered in this work. These inverters are characterized by significant mutual

inductances and multivariable coupling. As such, SISO control theory is generally not

adequate and multiple-input multiple-output (MIMO) theory becomes essential for

controlling these inverters.
ContributorsSarkar, Aratrik (Author) / Rodriguez, Armando A. (Thesis advisor) / Si, Jennie (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2015
158757-Thumbnail Image.png
Description
August Krogh, a 20th century Nobel Prize winner in Physiology and Medicine, once stated, "for such a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied." What developed to be known as the Krogh Principle,

August Krogh, a 20th century Nobel Prize winner in Physiology and Medicine, once stated, "for such a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied." What developed to be known as the Krogh Principle, has become the cornerstone of bioinspired robotics. This is the realization that solutions to various multifaceted engineering problems lie in nature. With the integration of biology, physics and engineering, the classical approach in solving engineering problems has transformed. Through such an integration, the presented research will address the following engineering solution: maneuverability on and through complex granular and aquatic environments. The basilisk lizard and the octopus are the key sources of inspiration for the anticipated solution. The basilisk lizard is a highly agile reptile with the ability to easily traverse on vast, alternating, unstructured, and complex terrains (i.e. sand, mud, water). This makes them a great medium for pursuing potential solutions for robotic locomotion on such terrains. The octopus, with a nearly soft, yet muscular hydrostat body and arms, is proficient in locomotion and its complex motor functions are vast. Their versatility, "infinite" degrees of freedom, and dexterity have made them an ideal candidate for inspiration in the fields such as soft robotics. Through conducting animal experiments on the basilisk lizard and octopus, insight can be obtained on the question: how does the animal interact with complex granular and aquatic environments so effectively? Following it through by conducting systematic robotic experiments, the capabilities and limitations of the animal can be understood. Integrating the hierarchical concepts observed and learnt through animal and robotic experiments, it can be used towards designing, modeling, and developing robotic systems that will assist humanity and society on a diversified set of applications: home service, health care, public safety, transportation, logistics, structural examinations, aquatic and extraterrestrial exploration, search-and-rescue, environmental monitoring, forestry, and agriculture, just to name a few. By learning and being inspired by nature, there exist the potential to go beyond nature for the greater good of society and humanity.
ContributorsBagheri, Hosain (Author) / Marvi, Hamidreza (Thesis advisor) / Berman, Spring M (Committee member) / DeNardo, Dale F (Committee member) / Emady, Heather N (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2020
Description
Bicycles and motorcycles offer maneuverability, energy efficiency and acceleration that four wheeled vehicles cannot offer given similar budget for. Two wheeled vehicles have drastically different dynamics from four wheeled vehicles due to their instability and gyroscopic effect from their wheels.

This thesis focuses on self-stabilization of a motorcycle using an

Bicycles and motorcycles offer maneuverability, energy efficiency and acceleration that four wheeled vehicles cannot offer given similar budget for. Two wheeled vehicles have drastically different dynamics from four wheeled vehicles due to their instability and gyroscopic effect from their wheels.

This thesis focuses on self-stabilization of a motorcycle using an active control momentum gyroscope (CMG) and validation of this multi-degree-of-freedom system’s mathematical model. Physical platform was created to mimic the simulation as accurately as possible and all components used were justified. This process involves derivation of a 3 Degree-of-Freedom (DOF) system’s forward kinematics and its Jacobian matrix, simulation analysis of different controller algorithms, setting the system and subsystem specifications, and real system experimentation and data analysis.

A Jacobian matrix was used to calculate accurately decomposed resultant angular velocities which are used to create the dynamics model of the system torque using the Euler-Lagrange method. This produces a nonlinear second order differential equation that is modeled using MATLAB/Simulink. PID, and cascaded feedback loop are tested in this Simulink model. Cascaded feedback loop shows most promises in the simulation analysis. Therefore, system specifications are calculated according to the data produced by this controller method. The model validation is executed using the Vicon motion capture system which captured the roll angle of the motorcycle. This work contributes to creating a set of procedures for creating a validated dynamic model for a CMG stabilized motorcycle which can be used to create variants of other self-stabilizing motorcycle system.
ContributorsMoon, Hansol (Author) / Zhang, Wenlong (Thesis advisor) / Frank, Daniel (Committee member) / Delp, Deana (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2020
158202-Thumbnail Image.png
Description
Complex dynamical systems are the kind of systems with many interacting components that usually have nonlinear dynamics. Those systems exist in a wide range of disciplines, such as physical, biological, and social fields. Those systems, due to a large amount of interacting components, tend to possess very high dimensionality. Additionally,

Complex dynamical systems are the kind of systems with many interacting components that usually have nonlinear dynamics. Those systems exist in a wide range of disciplines, such as physical, biological, and social fields. Those systems, due to a large amount of interacting components, tend to possess very high dimensionality. Additionally, due to the intrinsic nonlinear dynamics, they have tremendous rich system behavior, such as bifurcation, synchronization, chaos, solitons. To develop methods to predict and control those systems has always been a challenge and an active research area.

My research mainly concentrates on predicting and controlling tipping points (saddle-node bifurcation) in complex ecological systems, comparing linear and nonlinear control methods in complex dynamical systems. Moreover, I use advanced artificial neural networks to predict chaotic spatiotemporal dynamical systems. Complex networked systems can exhibit a tipping point (a “point of no return”) at which a total collapse occurs. Using complex mutualistic networks in ecology as a prototype class of systems, I carry out a dimension reduction process to arrive at an effective two-dimensional (2D) system with the two dynamical variables corresponding to the average pollinator and plant abundances, respectively. I demonstrate that, using 59 empirical mutualistic networks extracted from real data, our 2D model can accurately predict the occurrence of a tipping point even in the presence of stochastic disturbances. I also develop an ecologically feasible strategy to manage/control the tipping point by maintaining the abundance of a particular pollinator species at a constant level, which essentially removes the hysteresis associated with tipping points.

Besides, I also find that the nodal importance ranking for nonlinear and linear control exhibits opposite trends: for the former, large degree nodes are more important but for the latter, the importance scale is tilted towards the small-degree nodes, suggesting strongly irrelevance of linear controllability to these systems. Focusing on a class of recurrent neural networks - reservoir computing systems that have recently been exploited for model-free prediction of nonlinear dynamical systems, I uncover a surprising phenomenon: the emergence of an interval in the spectral radius of the neural network in which the prediction error is minimized.
ContributorsJiang, Junjie (Author) / Lai, Ying-Cheng (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Wang, Xiao (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2020
161600-Thumbnail Image.png
Description
In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and

In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and stability-guaranteed vehicle lateral driving control, this dissertation presents three main contributions.First, a new method is proposed to estimate and analyze vehicle lateral driving stability regions, which provide a direct and intuitive demonstration for stability control of AGVs. Based on a four-wheel vehicle model and a nonlinear 2D analytical LuGre tire model, a local linearization method is applied to estimate vehicle lateral driving stability regions by analyzing vehicle local stability at each operation point on a phase plane. The obtained stability regions are conservative because both vehicle and tire stability are simultaneously considered. Such a conservative feature is specifically important for characterizing the stability properties of AGVs. Second, to analyze vehicle stability, two novel features of the estimated vehicle lateral driving stability regions are studied. First, a shifting vector is formulated to explicitly describe the shifting feature of the lateral stability regions with respect to the vehicle steering angles. Second, dynamic margins of the stability regions are formulated and applied to avoid the penetration of vehicle state trajectory with respect to the region boundaries. With these two features, the shiftable stability regions are feasible for real-time stability analysis. Third, to keep the vehicle states (lateral velocity and yaw rate) always stay in the shiftable stability regions, different control methods are developed and evaluated. Based on different vehicle control configurations, two dynamic sliding mode controllers (SMC) are designed. To better control vehicle stability without suffering chattering issues in SMC, a non-overshooting model predictive control is proposed and applied. To further save computational burden for real-time implementation, time-varying control-dependent invariant sets and time-varying control-dependent barrier functions are proposed and adopted in a stability-guaranteed vehicle control problem. Finally, to validate the correctness and effectiveness of the proposed theories, definitions, and control methods, illustrative simulations and experimental results are presented and discussed.
ContributorsHuang, Yiwen (Author) / Chen, Yan (Thesis advisor) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yong, Sze Zheng (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
132094-Thumbnail Image.png
Description
With the revolution of low-cost microelectronics, rotary-wing vehicles have grown increasingly popular and important in the past two decades. With increased interest in quadcopters comes the need to for a systematic and rigorous framework to model, analyze, control, and design them. This thesis presents the beginning of such a framework.

With the revolution of low-cost microelectronics, rotary-wing vehicles have grown increasingly popular and important in the past two decades. With increased interest in quadcopters comes the need to for a systematic and rigorous framework to model, analyze, control, and design them. This thesis presents the beginning of such a framework.

The work presents the nonlinear equations of motion of a quadcopter. This includes the translational and rotational equations of motion, as well as an analysis of the nonlinear actuator dynamics. The work then analyzes the static properties of a quadcopter in forward flight equilibrium and shows how static properties change as physical properties of the vehicle are varied. Next, the dynamics of forward flight are linearized, and a dynamic analysis is provided.

After dynamic analysis, the work shows detailed hierarchical control system design trade studies, which includes attitude and translational inner-outer loop control. Among other designs, the following are presented: PD control, proportional control, pole-placement control. Each of these control architectures are employed for the inner loops and outer loops. The work also analyzes linear versus nonlinear simulation performance of a quadcopter, specifically for a step x-axis reference command. It is found that the nonlinear dynamics of the actuator cause significant discrepancy between linear and nonlinear simulation.

Finally, this thesis establishes directions for future graduate research. This includes hardware design, as well as moving toward design of a highly-maneuverable thrust-vectoring quadrotor which will be the focus of the proposed graduate PhD research. In summary, this thesis provides the beginning of a cohesive framework to model, analyze, control, and design quadcopters. It also lays the groundwork for graduate research and beyond.
ContributorsWallace, Brent (Author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12