Matching Items (10)
Filtering by

Clear all filters

151463-Thumbnail Image.png
Description
3D models of white dwarf collisions are used to assess the likelihood of double-degenerate mergers as progenitors for Type Ia supernovae (henceforth SNIa) and to identify observational signatures of double-degenerate collisions. Observations of individual SNIa, SNIa rates in different galaxy types, and double white dwarf binary systems suggest that mergers

3D models of white dwarf collisions are used to assess the likelihood of double-degenerate mergers as progenitors for Type Ia supernovae (henceforth SNIa) and to identify observational signatures of double-degenerate collisions. Observations of individual SNIa, SNIa rates in different galaxy types, and double white dwarf binary systems suggest that mergers or collisions between two white dwarfs play a role in the overall SNIa population. Given the possibility of two progenitor systems (single-degenerate and double-degenerate), the sample of SNIa used in cosmological calcula- tions needs to be carefully examined. To improve calculations of cosmological parameters, the development of calibrated diagnostics for double-degenerate progenitor SNIa is essential. Head-on white dwarf collision simulations are used to provide an upper limit on the Ni-56 production in white dwarf collisions. In chapter II, I explore zero impact parameter collisions of white dwarfs using the Eulerian grid code FLASH. The initial 1D white dwarf profiles are created assuming hydrostatic equilibrium and a uniform composition of 50% C-12 and 50% O-16. The masses range from 0.64 to 0.81 solar masses and have an isothermal temperature of 10^7 K. I map these 1D models onto a 3D grid, where the dimensions of the grid are each eight times the white dwarf radius, and the dwarfs are initially placed four white dwarf radii apart (center to center). To provide insight into a larger range of physical possibilities, I also model non-zero impact parameter white dwarf collisions (Chapter III). Although head-on white dwarf collisions provide an upper limit on Ni-56 production, non-zero impact parameter collisions provide insight into a wider range of physical scenarios. The initial conditions (box size, initial separation, composition, and initial temperature) are identical to those used for the head-on collisions (Chapter II) for the same range of masses. For each mass pair- ing, collision simulations are carried out at impact parameters b=1 and b=2 (grazing). Finally, I will address future work to be performed (Chapter IV).
ContributorsHawley, Wendy Phyllis (Author) / Timmes, Frank (Thesis advisor) / Young, Patrick (Committee member) / Starrfield, Sumner (Committee member) / Fouch, Matt (Committee member) / Patience, Jennifer (Committee member) / Arizona State University (Publisher)
Created2012
152707-Thumbnail Image.png
Description
As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation

As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation in elemental abundances of nearby stars, the actual range in stellar abundances can be determined using statistical methods. This research emphasizes the diversity of stellar elemental abundances and how that could affect the environment from which planets form. An intrinsic variation has been found to exist for almost all of the elements studied by most abundance-finding groups. Specifically, this research determines abundances for a set of 458 F, G, and K stars from spectroscopic planet hunting surveys for 27 elements, including: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, La, Ce, Nd, Eu, and Hf. Abundances of the elements in many known exosolar planet host stars are calculated for the purpose investigating new ways to visualize how stellar abundances could affect planetary systems, planetary formation, and mineralogy. I explore the Mg/Si and C/O ratios as well as place these abundances on ternary diagrams with Fe. Lastly, I emphasize the unusual stellar abundance of τ Ceti. τ Ceti is measured to have 5 planets of Super-Earth masses orbiting in near habitable zone distances. Spectroscopic analysis finds that the Mg/Si ratio is extremely high (~2) for this star, which could lead to alterations in planetary properties. τ Ceti's low metallicity and oxygen abundance account for a change in the location of the traditional habitable zone, which helps clarify a new definition of habitable planets.
ContributorsPagano, Michael (Author) / Young, Patrick (Thesis advisor) / Shim, Sang-Heon (Committee member) / Patience, Jennifer (Committee member) / Desch, Steven (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2014
152990-Thumbnail Image.png
Description
I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating identical initial conditions for one method from those of the other, and explore methodologies necessary for making these two methods

I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating identical initial conditions for one method from those of the other, and explore methodologies necessary for making these two methods as consistent as possible. With this, I first study the impact of streaming velocities of baryons with respect to dark matter, present at the epoch of reionization, on the ability for small halos to accrete gas at high redshift. With the inclusion of this stream velocity, I find the central density profile of halos is reduced, overall gas condensation is delayed, and infer a delay in the inevitable creation of stars.

I then combine the two numerical methods to study starburst outflows as they interact with satellite halos. This process leads to shocks catalyzing the formation of molecular coolants that lead to bursts in star formation, a process that is better captured in grid methods. The resultant clumps of stars are removed from their initial dark matter halo, resemble precursors to modern-day globular clusters, and their formation may be observable with upcoming telescopes.

Finally, I perform two simulation suites, comparing each numerical method's ability to model the impact of energetic feedback from accreting black holes at the core of giant clusters. With these comparisons I show that black hole feedback can maintain a hot diffuse medium while limiting the amount of gas that can condense into the interstellar medium, reducing the central star formation by up to an order of magnitude.
ContributorsRichardson, Mark Lawrence Albert (Author) / Scannapieco, Evan (Thesis advisor) / Rhoads, James (Committee member) / Scowen, Paul (Committee member) / Timmes, Frank (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2014
150630-Thumbnail Image.png
Description
Using high-resolution three-dimensional adaptive mesh refinement simulations I study the interaction between primordial minihalo, a clump of baryonic and dark matter with a virial temperature below the atomic cooling limit, and a galaxy outflow. In Chapter 2 I concentrate on the formation of molecular coolants and their effect on the

Using high-resolution three-dimensional adaptive mesh refinement simulations I study the interaction between primordial minihalo, a clump of baryonic and dark matter with a virial temperature below the atomic cooling limit, and a galaxy outflow. In Chapter 2 I concentrate on the formation of molecular coolants and their effect on the evolution of the minihalo gas. Molecular coolants are important since they allow gas to cool below 10000 K. Therefore, I implement a primordial chemistry and cooling network that tracks the evolution and cooling from these species. I show that the shock from the galaxy outflow produces an abundance of coolants in the primordial gas which allows the gas to cool to below 10000 K. I also show that this interaction produces compact stellar clusters that are ejected from their parent dark matter halos. In Chapter 3 I look at the turbulent mixing of metals that occur between the minihalo and outflow. To do this, I develop a sub-grid model for turbulence that reproduces three primary fluid instabilities. I find that the metals from the outflow are well mixed throughout the minihalo gas. In addition, the metal abundance found roughly corresponds to the observed abundances in halo globular clusters. In Chapter 4, I conduct a suite of simulations that follow this interaction over a wide range of parameters. In almost all cases, the shocked minihalos form molecules and cool rapidly to become compact, chemically homogenous stellar clusters. Furthermore, I show that the unique properties of these clusters make them a prime observational target for study with the next generation of telescopes. Given the unique properties of these clusters there are reasons to suspect that their low-redshift counterparts are halo globular clusters. I outline this comparison in Chapter 5 and give my conclusions in Chapter 6. Finally, I summarize my current work in Chapter 7 and future extensions in Chapter 8. By the end, I hope to convince you that the interaction between a galaxy outflow and a primordial minihalo provides a formation pathway for present day halo globular clusters.
ContributorsGray, William James (Author) / Scannapieco, Evan (Thesis advisor) / Starrfield, Sumner (Committee member) / Timmes, Frank (Committee member) / Windhorst, Rogier (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
150442-Thumbnail Image.png
Description
Most stars form in groups, and these clusters are themselves nestled within larger associations and stellar complexes. It is not yet clear, however, whether stars cluster on preferred size scales within galaxies, or if stellar groupings have a continuous size distribution. I have developed two methods to select stellar groupings

Most stars form in groups, and these clusters are themselves nestled within larger associations and stellar complexes. It is not yet clear, however, whether stars cluster on preferred size scales within galaxies, or if stellar groupings have a continuous size distribution. I have developed two methods to select stellar groupings across a wide range of size-scales in order to assess trends in the size distribution and other basic properties of stellar groupings. The first method uses visual inspection of color-magnitude and color-color diagrams of clustered stars to assess whether the compact sources within the potential association are coeval, and thus likely to be born from the same parentmolecular cloud. This method was developed using the stellar associations in the M51/NGC 5195 interacting galaxy system. This process is highly effective at selecting single-aged stellar associations, but in order to assess properties of stellar clustering in a larger sample of nearby galaxies, an automated method for selecting stellar groupings is needed. I have developed an automated stellar grouping selection method that is sensitive to stellar clustering on all size scales. Using the Source Extractor software package on Gaussian-blurred images of NGC 4214, and the annular surface brightness to determine the characteristic size of each cluster/association, I eliminate much of the size and density biases intrinsic to other methods. This automated method was tested in the nearby dwarf irregular galaxy NGC 4214, and can detect stellar groupings with sizes ranging from compact clusters to stellar complexes. In future work, the automatic selection method developed in this dissertation will be used to identify stellar groupings in a set of nearby galaxies to determine if the size scales for stellar clustering are uniform in the nearby universe or if it is dependent on local galactic environment. Once the stellar clusters and associations have been identified and age-dated, this information can be used to deduce disruption times from the age distribution as a function of the position of the stellar grouping within the galaxy, the size of the cluster or association, and the morphological type of the galaxy. The implications of these results for galaxy formation and evolution are discussed.
ContributorsKaleida, Catherine (Author) / Scowen, Paul A. (Thesis advisor) / Windhorst, Rogier A. (Thesis advisor) / Jansen, Rolf A. (Committee member) / Timmes, Francis X. (Committee member) / Scannapieco, Evan (Committee member) / Arizona State University (Publisher)
Created2011
151191-Thumbnail Image.png
Description
Lyman-alpha (Lyα) galaxies (LAEs) and Lyα blobs (LABs) are objects identified and studied due to their bright Lyα emission lines. This bright emission allows LAEs and LABs to be studied in the distant universe, providing a glimpse into the physical processes occuring in the early universe. This dissertation presents three

Lyman-alpha (Lyα) galaxies (LAEs) and Lyα blobs (LABs) are objects identified and studied due to their bright Lyα emission lines. This bright emission allows LAEs and LABs to be studied in the distant universe, providing a glimpse into the physical processes occuring in the early universe. This dissertation presents three complementary studies of LAEs and LABs at z ~ 3.1. The two main foci of this work are (1) to understand the gas kinematics in both classes of objects and (2) to improve spectral energy distribution (SED) fitting processes to better determine the physical characteristics of LAEs. Gas kinematics in this dissertation means looking for signatures of large-scale winds. This is an exciting astrophysical endeavor, because the results can provide insight into how Lyα photons escape distant galaxies and traverse the IGM, and the results have implications for how the epoch of reionization can be studied with the Lyα line and because winds can be a signature of powerful star formation events. In the first two studies we find signatures of winds in three LAEs by measuring the velocity offset between the redshifts of [OIII] and Lyα in these galaxies. The first two LAEs presented here represent the first ever measurements of [OIII] in Lyα-selected field galaxies. The third study reports no velocity offset between [OIII] and Lyα when the methodology is transferred to a z ~ 3.1 LAB. This lack of velocity offset is an interesting result, however, as powerful outflows and star formation events, which should impart a velocity offset, have been hypothesized as power sources for LABs. In addition to understanding the kinematics of these objects, we introduce a new parameter into the SED fitting process typically used to characterize LAEs. This new parameter enables better determination of characteristics like the age, mass, metallicity, dust content and star formation history of the galaxies in our sample. These characteristics provide a snapshot of galaxies in the universe ~ 11 billion years ago and also provide insight into how these characteristics compare to galaxies at other epochs.
ContributorsMcLinden, Emily (Author) / Rhoads, James (Thesis advisor) / Malhotra, Sangeeta (Committee member) / Timmes, Frank (Committee member) / Scowen, Paul (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
156627-Thumbnail Image.png
Description
The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of

The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of the current frontiers in astronomy and astrophysics.

In this work I present an improved model for following the formation of Pop III stars, their effects on early galaxy evolution, and how we might search for them. I make use of a new subgrid model of turbulent mixing to accurately follow the time scales required to mix supernova (SN) ejecta -- enriched with heavy elements -- into the pristine gas. I implement this model within a large-scale cosmological simulation and follow the fraction of gas with metallicity below a critical value marking the boundary between Pop III and metal enriched Population II (Pop II) star formation. I demonstrate that accounting for subgrid mixing results in a Pop III stars formation rate that is 2-3 times higher than standard models with the same physical resolution.

I also implement and track a new "Primordial metals" (PM) scalar that tracks the metals generated by Pop III SNe. These metals are taken up by second generation stars and likely result in a subclass of carbon-enhanced, metal-poor (CEMP) stars. By tracking both regular metals and PM, I can model, in post-processing, the elemental abundances of simulation stars. I find good agreement between observations of CEMP-no Milky Way halo stars and second generation stars within the simulation when assuming the first stars had a typical mass of 60 M☉, providing clues as to the Pop III initial mass function.
ContributorsSarmento, Richard John (Author) / Scannapieco, Evan (Thesis advisor) / Windhorst, Rogier (Committee member) / Young, Patrick (Committee member) / Timmes, Frank (Committee member) / Patience, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
189239-Thumbnail Image.png
Description
White Dwarf stars are the stellar remnants of low mass stars which have completed their evolution. Nearly all stars will become white dwarfs. The interior of a white dwarf encapsulates its evolution history: unraveling a white dwarf’s internal structure constrains the physical events which occurred to construct its composition. Variable,

White Dwarf stars are the stellar remnants of low mass stars which have completed their evolution. Nearly all stars will become white dwarfs. The interior of a white dwarf encapsulates its evolution history: unraveling a white dwarf’s internal structure constrains the physical events which occurred to construct its composition. Variable, or pulsating, white dwarfs emit pulsations which are sensitive to their internal stratification. Just as seismology reveals Earth’s interior, asteroseismology can reveal stellar interiors. The standard approach to construe an observed white dwarf’s chemical makeup is to match observed pulsation properties to theoretical stellar models. Observed white dwarf pulsation data has reached 6-7 significant digits of precision. As such, it is important for computational modeling to consider systematic offsets from initial conditions and theoretical uncertainties that are within the detectable threshold. By analyzing the magnitude of pulsation differences among various uncertainties from white dwarf models, one can place constraints on important theoretical uncertainties. In this thesis, I explore impacts on white dwarf pulsations that result from accounting for various uncertainties in computational models. I start by showing the importance of 22Ne, and its impact on the pulsations in Helium atmosphere white dwarfs. Next, I discuss how certain trapped modes of white dwarfs may yield a signal for the 12C(α,γ)16O reaction rate probability distribution function. This reaction occurs during the Helium core burning phase in stellar evolution, and chiefly determines the Carbon and Oxygen abundance of white dwarfs. Following this work, I show how overshooting impacts the pulsation signatures of the 12C(α, γ)16O reaction rate. I then touch on the analytical work I’ve done regarding educational research in the HabWorlds course offered at Arizona State University (ASU). I then summarize my conclusions from these efforts.
ContributorsChidester, Morgan Taylor (Author) / Timmes, Francis X (Thesis advisor) / Young, Patrick (Committee member) / Li, Mingming (Committee member) / Borthakur, Sanchayeeta (Committee member) / Line, Michael (Committee member) / Arizona State University (Publisher)
Created2023
171952-Thumbnail Image.png
Description
The balance between relative numbers, lifetime, and habitable zone (HZ) size of K stars (0.6 – 0.9 M⊙) in comparison with M (0.08 – 0.6 M⊙) and G (0.9 – 1.1 M⊙) stars makes them candidates to host “super-habitable” planets. Understanding the high- energy radiation environment of planets around these

The balance between relative numbers, lifetime, and habitable zone (HZ) size of K stars (0.6 – 0.9 M⊙) in comparison with M (0.08 – 0.6 M⊙) and G (0.9 – 1.1 M⊙) stars makes them candidates to host “super-habitable” planets. Understanding the high- energy radiation environment of planets around these stars is crucial, since ultraviolet (UV) and X-ray radiation may cause severe photodissociation and ionization of the atmosphere, with the potential for complete erosion. In this thesis, I present the first broad study of the UV and X-ray evolution of K stars. I first focused on Galaxy Evolution Explorer (GALEX) and Ro ̈ntgen Satellit (ROSAT) photometric UV and X-ray evolutions of K stars and compared this with the age evolution of both early- (0.35 – 0.6 M⊙) and late-M (0.08 – 0.35 M⊙) stars. I found that the fractional UV and X-ray flux from M and K stars is similar; however, the wider and farther HZs of K stars mean that there is less incident UV radiation on HZ planets. Next, I led a spectroscopic study of 41 K stars using Hubble Space Telescope Cosmic Origins Spectrograph (HST/COS) data to show that the UV line and continua emission show no decrease in flux beyond 650 Myr whereas early-M star flux declines by 150 Myr; therefore, the K star intrinsic UV flux is greater than early-M stars after this time. I suggest that this phenomenon is related to K star rotational spin-down stalling. Lastly, I revisited the GALEX and ROSAT data with newly-available distances from the Gaia mission for both K and M stars. I find that the UV flux for K stars is an order of magnitude higher for M stars at all ages and the flux in their respective HZs is similar. However, K star X-ray flux is an order of magnitude less in the HZ than for M stars. The age of decline shows a dependency on wavelength, a phenomenon which is not seen in either the early- or late-M star data. These results suggest thatK stars may not exhibit quite the advantage as HZ planet host stars as the scientific community originally thought.
ContributorsRichey-Yowell, Tyler (Author) / Shkolnik, Evgenya (Thesis advisor) / Patience, Jennifer (Committee member) / Jacobs, Daniel (Committee member) / Bowman, Judd (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2022
132092-Thumbnail Image.png
Description
I examine the effects of metallicity on solar mass stellar evolution, trying to replicate a previous result in Windhorst et.al., 2018, in which a zer metallicity solar mass star did not reach the AGB, and thus may turn into a helium white dwarf. In trying to replicate this result, I

I examine the effects of metallicity on solar mass stellar evolution, trying to replicate a previous result in Windhorst et.al., 2018, in which a zer metallicity solar mass star did not reach the AGB, and thus may turn into a helium white dwarf. In trying to replicate this result, I used the M.E.S.A. stellar evolution code and was unable to reproduce this result. While M.E.S.A has undergone several updates since the previous result was obtained, more current evidence suggests that this may have been a one-time occurrence, as no helium white dwarfs were produced for low-metallicity models. Nonetheless, interesting results were obtained, including a lowest metallicity value for which CNO burning does not significantly contribute during the main sequence, 1 −10 Z , which produces noticeable effects on post main sequence evolution. All models are run with no rotation, one solar mass, and a series of MESA parameters kept constant, with the only exception being metallicity. Any metallicity value listed as Nd −10 is an absolute mass fraction, and Z is relative to solar metallicity, 2d*10 −2 .
ContributorsTompkins, Scott Andrew (Author) / Windhorst, Rogier (Thesis director) / Young, Patrick (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12