Matching Items (6)
Filtering by

Clear all filters

Description
In this research paper I combine statistics from various reports and studies with around 20 different interviews with female journalists to understand how women are faring in national and local television newsrooms in 2019. I explore issues such as the pay gap, sexual assault, the importance of appearance, balancing work

In this research paper I combine statistics from various reports and studies with around 20 different interviews with female journalists to understand how women are faring in national and local television newsrooms in 2019. I explore issues such as the pay gap, sexual assault, the importance of appearance, balancing work and family life and obstacles that women of color uniquely face. I spoke with women from various cultural backgrounds, experience levels, and in different positions within their newsrooms. Through my scholarly research and 19 interviews with women who either currently work at NBC News in New York City and women who currently or recently worked at 12News, the NBC affiliate in Phoenix, I conclude they share similar stories of oppression, sexism and issues. However, women have made more progress in local markets and have more opportunities when compared to the national level. I also explore reasons for why this disparity is happening and why local newsrooms seem to have more women represented through their on-air talent than national newsrooms do. One of the reasons I concluded for this include, how local newsrooms have a better understanding of their audience members thus making them more able to reflect their talent to their diverse audience. Another factor that might play a role in this disparity includes, the historical factor and societal norm of seeing men in higher positions and authoritative roles, such as being an anchor, at the network level. Lastly, the idea of how family and having children impacts women’s careers more than men. This can lead to less women pursuing a job at the network since they must spend time raising a family and have the ability and flexibility to do that easier at the local level. Overall, I focused on the barriers, obstacles and stories these women have had throughout their careers all while looking at it from both a local perspective and a national one.
ContributorsBaietto, Marcella Marie (Author) / Wallace, Julia (Thesis director) / Dunn, Heather (Committee member) / Walter Cronkite School of Journalism & Mass Comm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

Secure Scuttlebutt is a digital social network in which the network data is distributed among the users.<br/>This is done to secure several benefits, like offline browsing, censorship resistance, and to imitate natural social networks, but it comes with downsides, like the lack of an obvious implementation of a recommendation algorithm.<br/>This

Secure Scuttlebutt is a digital social network in which the network data is distributed among the users.<br/>This is done to secure several benefits, like offline browsing, censorship resistance, and to imitate natural social networks, but it comes with downsides, like the lack of an obvious implementation of a recommendation algorithm.<br/>This paper proposes Whuffie, an algorithm that tracks each user's reputation for having information that is interesting to a user using conditional probabilities.<br/>Some errors in the main Secure Scuttlebutt network prevent current large-scale testing of the usefulness of the algorithm, but testing on my own personal account led me to believe it a success.

ContributorsVermillion, Alexander J (Author) / Bazzi, Rida (Thesis director) / Richa, Andrea (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132089-Thumbnail Image.png
Description
The Morris-Lecar two-dimensional conductance-based model for an excitable membrane can be used to simulate neurons, and these neuron models can be connected to model neuronal networks. In this work, we analyze the dynamics of the Morris-Lecar model using phase plane analysis, and we simulate the model with different parameter regimes.

The Morris-Lecar two-dimensional conductance-based model for an excitable membrane can be used to simulate neurons, and these neuron models can be connected to model neuronal networks. In this work, we analyze the dynamics of the Morris-Lecar model using phase plane analysis, and we simulate the model with different parameter regimes. We also develop and simulate a two-cell model network, as well as larger networks composed of 17 cells. We show that the bifurcation type and the parameters for the synaptic connections between model neurons affect the model network dynamic behavior. In particular, we look at the synchronization of networks of identical, repetitively firing neurons.
ContributorsSchlichting, Nicolas Jordan (Author) / Crook, Dr. Sharon (Thesis director) / Baer, Dr. Steven (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132270-Thumbnail Image.png
Description
YAP/TAZ is the key effector in the Hippo pathway, but it is also involved in many other regulatory pathways to control tissue and organ size. To better understand its regulation and effects in tumorigenesis and degeneration, a preliminary feedback network was created with the species YAP/TAZ, phosphorylated YAP/TAZ, LATS, miR-130a,

YAP/TAZ is the key effector in the Hippo pathway, but it is also involved in many other regulatory pathways to control tissue and organ size. To better understand its regulation and effects in tumorigenesis and degeneration, a preliminary feedback network was created with the species YAP/TAZ, phosphorylated YAP/TAZ, LATS, miR-130a, VGLL4, and β-catenin. From this network a set of ordinary differential equations were written and analyzed for parameter effects. A model showing the healthy, tumorigenic, and degenerative states was created and preliminary parameter analysis identified the effects of parameter modifications on the overall levels of YAP/TAZ. Further analysis is required and connections with the underlying biology should continue to be pursued to better understand how parameter modifications could improve disease treatments.
ContributorsSussex, Erin Nicole (Author) / Tian, Xiaojun (Thesis director) / Wang, Xiao (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165085-Thumbnail Image.png
Description
Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten

Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten more powerful. One no longer needs to carry a complete laptop to carry out network mapping. With this miniaturization and greater popularity of quadcopter technology, the two can be combined to create a more efficient wardriving setup in a potentially more target-rich environment. Thus, we set out to create a prototype as a proof of concept of this combination. By creating a bracket for a Raspberry Pi to be mounted to a drone with other wireless sniffing equipment, we demonstrate that one can use various off the shelf components to create a powerful network detection device. In this write up, we also outline some of the challenges encountered by combining these two technologies, as well as the solutions to those challenges. Adding payload weight to drones that are not initially designed for it causes detrimental effects to various characteristics such as flight behavior and power consumption. Less computing power is available due to the miniaturization that must take place for a drone-mounted solution. Communication between the miniature computer and a ground control computer is also essential in overall system operation. Below, we highlight solutions to these various problems as well as improvements that can be implemented for maximum system effectiveness.
ContributorsHer, Zachary (Author) / Walker, Elizabeth (Co-author) / Gupta, Sandeep (Thesis director) / Wang, Ruoyu (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165086-Thumbnail Image.png
Description

Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten

Wardriving is when prospective malicious hackers drive with a portable computer to sniff out and map potentially vulnerable networks. With the advent of smart homes and other Internet of Things devices, this poses the possibility of more unsecure targets. The hardware available to the public has also miniaturized and gotten more powerful. One no longer needs to carry a complete laptop to carry out network mapping. With this miniaturization and greater popularity of quadcopter technology, the two can be combined to create a more efficient wardriving setup in a potentially more target-rich environment. Thus, we set out to create a prototype as a proof of concept of this combination. By creating a bracket for a Raspberry Pi to be mounted to a drone with other wireless sniffing equipment, we demonstrate that one can use various off the shelf components to create a powerful network detection device. In this write up, we also outline some of the challenges encountered by combining these two technologies, as well as the solutions to those challenges. Adding payload weight to drones that are not initially designed for it causes detrimental effects to various characteristics such as flight behavior and power consumption. Less computing power is available due to the miniaturization that must take place for a drone-mounted solution. Communication between the miniature computer and a ground control computer is also essential in overall system operation. Below, we highlight solutions to these various problems as well as improvements that can be implemented for maximum system effectiveness.

ContributorsWalker, Elizabeth (Author) / Her, Zachary (Co-author) / Gupta, Sandeep (Thesis director) / Wang, Ruoyu (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05