Matching Items (8)
Filtering by

Clear all filters

152590-Thumbnail Image.png
Description
Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost

Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost in handling breaches for security architects and security engineers. The process of security testing which involves creating tests that effectively examine vulnerabilities is a challenging task. Role-Based Access Control (RBAC) has been widely adopted to support fine-grained access control. However, in practice, due to its complexity including role management, role hierarchy with hundreds of roles, and their associated privileges and users, systematically testing RBAC systems is crucial to ensure the security in various domains ranging from cyber-infrastructure to mission-critical applications. In this thesis, we introduce i) a security testing technique for RBAC systems considering the principle of maximum privileges, the structure of the role hierarchy, and a new security test coverage criterion; ii) a MTBDD (Multi-Terminal Binary Decision Diagram) based representation of RBAC security policy including RHMTBDD (Role Hierarchy MTBDD) to efficiently generate effective positive and negative security test cases; and iii) a security testing framework which takes an XACML-based RBAC security policy as an input, parses it into a RHMTBDD representation and then generates positive and negative test cases. We also demonstrate the efficacy of our approach through case studies.
ContributorsGupta, Poonam (Author) / Ahn, Gail-Joon (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2014
149803-Thumbnail Image.png
Description
With the advent of technologies such as web services, service oriented architecture and cloud computing, modern organizations have to deal with policies such as Firewall policies to secure the networks, XACML (eXtensible Access Control Markup Language) policies for controlling the access to critical information as well as resources. Management of

With the advent of technologies such as web services, service oriented architecture and cloud computing, modern organizations have to deal with policies such as Firewall policies to secure the networks, XACML (eXtensible Access Control Markup Language) policies for controlling the access to critical information as well as resources. Management of these policies is an extremely important task in order to avoid unintended security leakages via illegal accesses, while maintaining proper access to services for legitimate users. Managing and maintaining access control policies manually over long period of time is an error prone task due to their inherent complex nature. Existing tools and mechanisms for policy management use different approaches for different types of policies. This research thesis represents a generic framework to provide an unified approach for policy analysis and management of different types of policies. Generic approach captures the common semantics and structure of different access control policies with the notion of policy ontology. Policy ontology representation is then utilized for effectively analyzing and managing the policies. This thesis also discusses a proof-of-concept implementation of the proposed generic framework and demonstrates how efficiently this unified approach can be used for analysis and management of different types of access control policies.
ContributorsKulkarni, Ketan (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2011
150987-Thumbnail Image.png
Description
In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned and operated by third-party service providers, there are risks of unauthorized use of the users' sensitive data by service providers. Although there are many techniques for protecting users' data from outside attackers, currently there is no effective way to protect users' sensitive data from service providers. In this dissertation, an approach is presented to protecting the confidentiality of users' data from service providers, and ensuring that service providers cannot collect users' confidential data while the data is processed or stored in cloud computing systems. The approach has four major features: (1) separation of software service providers and infrastructure service providers, (2) hiding the information of the owners of data, (3) data obfuscation, and (4) software module decomposition and distributed execution. Since the approach to protecting users' data confidentiality includes software module decomposition and distributed execution, it is very important to effectively allocate the resource of servers in SBS to each of the software module to manage the overall performance of workflows in SBS. An approach is presented to resource allocation for SBS to adaptively allocating the system resources of servers to their software modules in runtime in order to satisfy the performance requirements of multiple workflows in SBS. Experimental results show that the dynamic resource allocation approach can substantially increase the throughput of a SBS and the optimal resource allocation can be found in polynomial time
ContributorsAn, Ho Geun (Author) / Yau, Sik-Sang (Thesis advisor) / Huang, Dijiang (Committee member) / Ahn, Gail-Joon (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2012
154142-Thumbnail Image.png
Description
A load balancer is an essential part of many network systems. A load balancer is capable of dividing and redistributing incoming network traffic to different back end servers, thus improving reliability and performance. Existing load balancing solutions can be classified into two categories: hardware-based or software-based. Hardware-based load balancing systems

A load balancer is an essential part of many network systems. A load balancer is capable of dividing and redistributing incoming network traffic to different back end servers, thus improving reliability and performance. Existing load balancing solutions can be classified into two categories: hardware-based or software-based. Hardware-based load balancing systems are hard to manage and force network administrators to scale up (replacing with more powerful but expensive hardware) when their system can not handle the growing traffic. Software-based solutions have a limitation when dealing with a single large TCP flow. In recent years, with the fast developments of virtualization technology, a new trend of network function virtualization (NFV) is being adopted. Instead of using proprietary hardware, an NFV network infrastructure uses virtual machines running to implement network functions such as load balancers, firewalls, etc. In this thesis, a new load balancing system is designed and evaluated. This system is high performance and flexible. It can fully utilize the bandwidth between a load balancer and back end servers compared to traditional load balancers such as HAProxy. The experimental results show that using this NFV load balancer could have $n$ ($n$ is the number of back end servers) times better performance than HAProxy. Also, an extract, transform and load (ETL) application was implemented to demonstrate that this load balancer can shorten data load time. The experiment shows that when loading a large data set (18.3GB), our load balancer needs only 28\% less time than traditional load balancer.
ContributorsWu, Jinxuan (Author) / Syrotiuk, Violet R. (Thesis advisor) / Bazzi, Rida (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2015
156904-Thumbnail Image.png
Description
Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new, hands-on approach to teaching machine learning by streamlining the process

Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new, hands-on approach to teaching machine learning by streamlining the process of generating Inertial Movement Unit (IMU) data from multirotor flight sessions, training a linear classifier, and applying said classifier to solve Multi-rotor Activity Recognition (MAR) problems in an online lab setting. MAR labs leverage cloud computing and data storage technologies to host a versatile environment capable of logging, orchestrating, and visualizing the solution for an MAR problem through a user interface. MAR labs extends Arizona State University’s Visual IoT/Robotics Programming Language Environment (VIPLE) as a control platform for multi-rotors used in data collection. VIPLE is a platform developed for teaching computational thinking, visual programming, Internet of Things (IoT) and robotics application development. As a part of this education platform, this work also develops a 3D simulator capable of simulating the programmable behaviors of a robot within a maze environment and builds a physical quadrotor for use in MAR lab experiments.
ContributorsDe La Rosa, Matthew Lee (Author) / Chen, Yinong (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2018
153754-Thumbnail Image.png
Description
Commercial load balancers are often in use, and the production network at Arizona State University (ASU) is no exception. However, because the load balancer uses IP addresses, the solution does not apply to all applications. One such application is Rsyslog. This software processes syslog packets and stores them in files.

Commercial load balancers are often in use, and the production network at Arizona State University (ASU) is no exception. However, because the load balancer uses IP addresses, the solution does not apply to all applications. One such application is Rsyslog. This software processes syslog packets and stores them in files. The loss rate of incoming log packets is high due to the incoming rate of the data. The Rsyslog servers are overwhelmed by the continuous data stream. To solve this problem a software defined networking (SDN) based load balancer is designed to perform a transport-level load balancing over the incoming load to Rsyslog servers. In this solution the load is forwarded to one Rsyslog server at a time, according to one of a Round-Robin, Random, or Load-Based policy. This gives time to other servers to process the data they have received and prevent them from being overwhelmed. The evaluation of the proposed solution is conducted a physical testbed with the same data feed as the commercial solution. The results suggest that the SDN-based load balancer is competitive with the commercial load balancer. Replacing the software OpenFlow switch with a hardware switch is likely to further improve the results.
ContributorsGhaffarinejad, Ashkan (Author) / Syrotiuk, Violet R. (Thesis advisor) / Xue, Guoliang (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2015
156819-Thumbnail Image.png
Description
Internet of Things (IoT) is emerging as part of the infrastructures for advancing a large variety of applications involving connections of many intelligent devices, leading to smart communities. Due to the severe limitation of the computing resources of IoT devices, it is common to offload tasks of various applications requiring

Internet of Things (IoT) is emerging as part of the infrastructures for advancing a large variety of applications involving connections of many intelligent devices, leading to smart communities. Due to the severe limitation of the computing resources of IoT devices, it is common to offload tasks of various applications requiring substantial computing resources to computing systems with sufficient computing resources, such as servers, cloud systems, and/or data centers for processing. However, this offloading method suffers from both high latency and network congestion in the IoT infrastructures.

Recently edge computing has emerged to reduce the negative impacts of tasks offloading to remote computing systems. As edge computing is in close proximity to IoT devices, it can reduce the latency of task offloading and reduce network congestion. Yet, edge computing has its drawbacks, such as the limited computing resources of some edge computing devices and the unbalanced loads among these devices. In order to effectively explore the potential of edge computing to support IoT applications, it is necessary to have efficient task management and load balancing in edge computing networks.

In this dissertation research, an approach is presented to periodically distributing tasks within the edge computing network while satisfying the quality-of-service (QoS) requirements of tasks. The QoS requirements include task completion deadline and security requirement. The approach aims to maximize the number of tasks that can be accommodated in the edge computing network, with consideration of tasks’ priorities. The goal is achieved through the joint optimization of the computing resource allocation and network bandwidth provisioning. Evaluation results show the improvement of the approach in increasing the number of tasks that can be accommodated in the edge computing network and the efficiency in resource utilization.
ContributorsSong, Yaozhong (Author) / Yau, Sik-Sang (Thesis advisor) / Huang, Dijiang (Committee member) / Sarjoughian, Hessam S. (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2018
157577-Thumbnail Image.png
Description
Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the

Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the limited resources it can employ in various application scenarios, including computing power, network resource, dedicated hardware, etc. The situation is further exacerbated by the stringent quality-of-service (QoS) requirements of many IoT applications, such as delay, bandwidth, security, reliability, and more. This mismatch in resources and demands has greatly hindered the deployment and utilization of IoT services in many resource-intense and QoS-sensitive scenarios like autonomous driving and virtual reality.

I believe that the resource issue in IoT will persist in the near future due to technological, economic and environmental factors. In this dissertation, I seek to address this issue by means of smart resource allocation. I propose mathematical models to formally describe various resource constraints and application scenarios in IoT. Based on these, I design smart resource allocation algorithms and protocols to maximize the system performance in face of resource restrictions. Different aspects are tackled, including networking, security, and economics of the entire IoT ecosystem. For different problems, different algorithmic solutions are devised, including optimal algorithms, provable approximation algorithms, and distributed protocols. The solutions are validated with rigorous theoretical analysis and/or extensive simulation experiments.
ContributorsYu, Ruozhou, Ph.D (Author) / Xue, Guoliang (Thesis advisor) / Huang, Dijiang (Committee member) / Sen, Arunabha (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2019