Matching Items (20)
Filtering by

Clear all filters

135426-Thumbnail Image.png
Description
Company X is one of the world's largest manufacturer of semiconductors. The company relies on various suppliers in the U.S. and around the globe for its manufacturing process. The financial health of these suppliers is vital to the continuation of Company X's business without any material interruption. Therefore, it is

Company X is one of the world's largest manufacturer of semiconductors. The company relies on various suppliers in the U.S. and around the globe for its manufacturing process. The financial health of these suppliers is vital to the continuation of Company X's business without any material interruption. Therefore, it is in Company X's interest to monitor its supplier's financial performance. Company X has a supplier financial health model currently in use. Having been developed prior to watershed events like the Great Recession, the current model may not reflect the significant changes in the economic environment due to these events. Company X wants to know if there is a more accurate model for evaluating supplier health that better indicates business risk. The scope of this project will be limited to a sample of 24 suppliers representative of Company X's supplier base that are public companies. While Company X's suppliers consist of both private and public companies, the used of exclusively public companies ensures that we will have sufficient and appropriate data for the necessary analysis. The goal of this project is to discover if there is a more accurate model for evaluating the financial health of publicly traded suppliers that better indicates business risk. Analyzing this problem will require a comprehensive understanding of various financial health models available and their components. The team will study best practice and academia. This comprehension will allow us to customize a model by incorporating metrics that allows greater accuracy in evaluating supplier financial health in accordance with Company X's values.
ContributorsLi, Tong (Co-author) / Gonzalez, Alexandra (Co-author) / Park, Zoon Beom (Co-author) / Vogelsang, Meridith (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135433-Thumbnail Image.png
Description
For our collaborative thesis we explored the US electric utility market and how the Internet of Things technology movement could capture a possible advancement of the current existing grid. Our objective of this project was to successfully understand the market trends in the utility space and identify where a semiconductor

For our collaborative thesis we explored the US electric utility market and how the Internet of Things technology movement could capture a possible advancement of the current existing grid. Our objective of this project was to successfully understand the market trends in the utility space and identify where a semiconductor manufacturing company, with a focus on IoT technology, could penetrate the market using their products. The methodology used for our research was to conduct industry interviews to formulate common trends in the utility and industrial hardware manufacturer industries. From there, we composed various strategies that The Company should explore. These strategies were backed up using qualitative reasoning and forecasted discounted cash flow and net present value analysis. We confirmed that The Company should use specific silicon microprocessors and microcontrollers that pertained to each of the four devices analytics demand. Along with a silicon strategy, our group believes that there is a strong argument for a data analytics software package by forming strategic partnerships in this space.
ContributorsLlazani, Loris (Co-author) / Ruland, Matthew (Co-author) / Medl, Jordan (Co-author) / Crowe, David (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Economics (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Hugh Downs School of Human Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135450-Thumbnail Image.png
Description
As the IoT (Internet of Things) market continues to grow, Company X needs to find a way to penetrate the market and establish larger market share. The problem with Company X's current strategy and cost structure lies in the fact that the fastest growing portion of the IoT market is

As the IoT (Internet of Things) market continues to grow, Company X needs to find a way to penetrate the market and establish larger market share. The problem with Company X's current strategy and cost structure lies in the fact that the fastest growing portion of the IoT market is microcontrollers (MCUs). As Company X currently holds its focus in manufacturing microprocessors (MPUs), the current manufacturing strategy is not optimal for entering competitively into the MCU space. Within the MCU space, the companies that are competing the best do not utilize such high level manufacturing processes because these low cost products do not demand them. Given that the MCU market is largely untested by Company X and its products would need to be manufactured at increasingly lower costs, it runs the risk of over producing and holding obsolete inventory that is either scrapped or sold at or below cost. In order to eliminate that risk, we will explore alternative manufacturing strategies for Company X's MCU products specifically, which will allow for a more optimal cost structure and ultimately a more profitable Internet of Things Group (IoTG). The IoT MCU ecosystem does not require the high powered technology Company X is currently manufacturing and therefore, Company X loses large margins due to its unnecessary leading technology. Since cash is king, pursuing a fully external model for MCU design and manufacturing processes will generate the highest NPV for Company X. It also will increase Company X's market share, which is extremely important given that every tech company in the world is trying to get its hands into the IoT market. It is possible that in ten to thirty years down the road, Company X can manufacture enough units to keep its products in-house, but this is not feasible in the foreseeable future. For now, Company X should focus on the cost market of MCUs by driving its prices down while maintaining low costs due to the variables of COGS and R&D given in our fully external strategy.
ContributorsKadi, Bengimen (Co-author) / Peterson, Tyler (Co-author) / Langmack, Haley (Co-author) / Quintana, Vince (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / School of Accountancy (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136506-Thumbnail Image.png
Description
The purpose of this thesis was to design a market entrance strategy for Company X to enter the microcontroller (MCU) market within the Internet of Things (IoT). The five IoT segments are automotive; medical; retail; industrial; and military, aerospace, and government. To reach a final decision, we will research the

The purpose of this thesis was to design a market entrance strategy for Company X to enter the microcontroller (MCU) market within the Internet of Things (IoT). The five IoT segments are automotive; medical; retail; industrial; and military, aerospace, and government. To reach a final decision, we will research the markets, analyze make versus buy scenarios, and deliver a financial analysis on the chosen strategy. Based on the potential financial benefits and compatibility with Company X's current business model, we recommend that Company X enter the automotive segment through mergers & acquisitions (M&A). After analyzing the supply chain structure of the automotive IoT, we advise Company X to acquire Freescale Semiconductor for $46.98 per share.
ContributorsBradley, Rachel (Co-author) / Fankhauser, Elisa (Co-author) / McCoach, Robert (Co-author) / Zheng, Weilin (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / School of Accountancy (Contributor) / School of International Letters and Cultures (Contributor) / WPC Graduate Programs (Contributor)
Created2015-05
136355-Thumbnail Image.png
Description
This thesis details our experience assisting BASE Equity Partners, a private equity firm based in New York City, on three prospective agricultural dealership deals over the course of this past academic year. The firm is currently structured as a Fundless Sponsor. This distinct structural trait is common for a type

This thesis details our experience assisting BASE Equity Partners, a private equity firm based in New York City, on three prospective agricultural dealership deals over the course of this past academic year. The firm is currently structured as a Fundless Sponsor. This distinct structural trait is common for a type of private equity firm known among practitioners as pledge funds. This creates an interesting element for our experience as there is very limited academic research on these types of firms, which, since the Great Recession, have become popular players in middle-market private equity deals. We, first, provide some historical context on pledge funds and identify their primary differences with traditional private equity. The remainder of the paper documents our experience working on the agricultural dealership deals. We have organized this portion after the manner in which we received assignments. We go into detail on the specific projects with which we were tasked, our interactions with the partners and the major takeaways we had from this learning experience. This thesis paper will enrich the academic knowledge regarding pledge funds—and private equity generally—by documenting a real experience of what it is like performing analyst-level tasks at a real firm. Additionally, we were privy to information that is highly confidential, and though we have protected the confidentiality of the companies through pseudonyms and redaction of confidential material, all of the financial data shown, models provided and qualitative discussion is real.
ContributorsTang, Ivan (Co-author) / Johnson, Bradley (Co-author) / Panosian, Tro (Co-author) / Simonson, Mark (Thesis director) / Bonadurer, Werner (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Department of English (Contributor) / School of Accountancy (Contributor) / School of International Letters and Cultures (Contributor)
Created2015-05
133829-Thumbnail Image.png
Description
The global network, serving as the backbone of the Internet and the flow of all digital information, has evolved since the birth of the internet in 1983 1. From the first generation of networks that supported the first cell phones, the system has matured to the existing fourth generation (4G),

The global network, serving as the backbone of the Internet and the flow of all digital information, has evolved since the birth of the internet in 1983 1. From the first generation of networks that supported the first cell phones, the system has matured to the existing fourth generation (4G), providing greater speed and expanded capabilities beyond basic calling and texting. The goal of our project was to identify how well Company X is positioned to capitalize on the transition to 5G, which will involve almost twice the amount of interconnected devices than today. To do this, we completed the following various tasks: 1. Identify the networking segments to focus our research. 2. Identify the major customers in these segments and how much of the market share each occupies. 3. Analyze the major benchmarks and metrics these customers value when purchasing the microprocessors for their networking devices. 4. Identify Company X's major competitors and their comparable products. 5. Compare the benchmark performances of Company X's offerings and its competitors 6. Create a model that provides a 5-year NPV as well as Company X's market share 7. Employ this model to evaluate various pricing strategies. 8. Determine the optimal pricing strategy and make a final recommendation. As 5G evolves, the demand for high-quality, low-power networking devices (e.g. routers, switches, access points) will increase. After performing our analyses, we will be able to decide how Company X's networking-oriented SoCs (chipset) compare to those of the other major competitors and use this relative performance to determine an appropriate ASP (average selling price) for these SoCs.
ContributorsDimitroff, Alex (Co-author) / Arias, Stephen (Co-author) / Masson, Taylor (Co-author) / McCall, Kyle (Co-author) / Hardy, Sebastian (Co-author) / Simonson, Mark (Thesis director) / Haller, Marcie (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134536-Thumbnail Image.png
Description
The basis of this project was to analyze the potential cost savings derived from the implementation of an ultrasonic flaw detector for gas pipes in factories. The group began by researching the market of the Industrial Internet of Things. IIoT is a very attractive market for investment, as connected technologies

The basis of this project was to analyze the potential cost savings derived from the implementation of an ultrasonic flaw detector for gas pipes in factories. The group began by researching the market of the Industrial Internet of Things. IIoT is a very attractive market for investment, as connected technologies are become both more advanced and more affordable. Factory automation also saves costs of human capital, maintenance, and bad product cost as well as safety. After doing this preliminary research, the group continued by identifying potential solutions to current shortcomings of the manufacturing status quo. After narrowing down the options, the ultrasonic flaw detector appeared to have the highest potential for success in Company X's factories. The group began doing research on what physical components would go into this solution. They found pricing for all of the various parts of such a device as well as estimated labor, maintenance, and implementation costs. After estimating these costs, the team began the construction of a detailed financial model to generate the hypothetical net present value of such a tool. After presenting two times to a panel of Company X employees, the group decided to focus only on cost savings for Company X, and not the potential revenues of selling the whole solution. They ran a sensitivity analysis on all of the factors that contributed to the NPV of the project, and discovered that the estimated percentage of scrapped product resulting from gas leaks and the percentage of gas lost to leaks contributed the most to the NPV.
ContributorsFlick, Jacob (Co-author) / Alam, Mustafa (Co-author) / Nguyen, Mong (Co-author) / Zhang, Zihan (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / WPC Graduate Programs (Contributor) / School of International Letters and Culture (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132874-Thumbnail Image.png
Description
The purpose and goal of this project is to pinpoint a potential use case for Company X to invest in to sell their 5G modems. As 5G technology is growing to be a dominant force in global markets, Company X is looking to capitalize on the emerging technology by selling

The purpose and goal of this project is to pinpoint a potential use case for Company X to invest in to sell their 5G modems. As 5G technology is growing to be a dominant force in global markets, Company X is looking to capitalize on the emerging technology by selling their 5G modems for Internet of Things applications. Research and gathering of information involved understanding cellular connectivity, modem operations and applications, companies in related industries, the history of the wireless spectrum, the pillars of 5G technology, and the plethora of use cases enabled by 5G. Looking at smart street lights as a potential use case for Company X, analyses were conducted to recommend whether Company X should invest in smart street lights. These analyses ranged from researching Company X’s competitors to performing a pro forma financial analysis to see if it is financially viable for Company X to enter the smart street light industry. The final recommendation is for Company X to not invest in smart street lighting.
ContributorsPannala, Ishan R (Co-author) / Alcaron, Sandra (Co-author) / Nilles, Robert (Co-author) / Wells, Dwight (Co-author) / Simonson, Mark (Thesis director) / Reber, Kevin (Committee member) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134954-Thumbnail Image.png
Description
We chose to analyze Apple's current cash and cash equivalents balance of $246.1 billion. To fully understand how to maximize Apple's investment using this cash balance, we performed detailed due diligence on the company. We analyzed the history of apple, a timeline of their major product releases, their financial statements,

We chose to analyze Apple's current cash and cash equivalents balance of $246.1 billion. To fully understand how to maximize Apple's investment using this cash balance, we performed detailed due diligence on the company. We analyzed the history of apple, a timeline of their major product releases, their financial statements, product mix, and the industries in which they operate. This allowed us to gain a deeper understanding of available opportunities. After doing our due diligence on the company, we look at their current cash levels and potential reasons that the cash balance has been increasing so quickly. Another component of their cash balance is the implications of a tax holiday for repatriation, so we also looked at the potential effects of this on Apple's cash balance. Finally, we begin the main portion of our project where look at the six potential options for the cash. We cover share buybacks, dividends or a special dividend, paying down debt, investing in research and development, making a large acquisition, or continuing to build a high cash balance. We pull data on each of these, look at financial metrics and many different numbers to evaluate which of these six options would maximize shareholder value. A large portion of our work was spent looking at acquisition targets. We finally vetted three potential targets: Tesla, Netflix, and Disney. These companies made sense for a number of different qualitative reasons, but after looking at them from a financial standpoint we concluded Disney was the only company worth modeling out. A detailed financial model was built on Disney to find a purchase price. Included in this was a discounted cash flow analysis, comparable company's analysis, analyzing precedent transactions, and then finding an enterprise value based on the model. We also built an accretion dilution model to see what the effect on earnings per share is and also what the combined entity would look like. In order to present our findings, we built a pitch book. A pitch book is the standard type of presentation that investment banks use in order to show their recommendations to companies.
ContributorsMuscheid, Michael (Co-author) / Klein, Matthew (Co-author) / Lauro, John (Co-author) / Gagner, Landon (Co-author) / Simonson, Mark (Thesis director) / Stein, Luke (Committee member) / Department of Economics (Contributor) / Department of Finance (Contributor) / School of Accountancy (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134822-Thumbnail Image.png
Description
Smart cities ""utilize information and communication technologies with the aim to increase the life quality of their inhabitants while providing sustainable development"". The Internet of Things (IoT) allows smart devices to communicate with each other using wireless technology. IoT is by far the most important component in the development of

Smart cities ""utilize information and communication technologies with the aim to increase the life quality of their inhabitants while providing sustainable development"". The Internet of Things (IoT) allows smart devices to communicate with each other using wireless technology. IoT is by far the most important component in the development of smart cities. Company X is a leader in the semiconductor industry looking to grow its revenue in the IoT space. This thesis will address how Company X can deliver IoT solutions to government municipalities with the goal of simultaneously increasing revenue through value-added engagement and decreasing spending by more efficiently managing infrastructure upgrades.
ContributorsJiang, Yichun (Co-author) / Davidoff, Eric (Co-author) / Dawoud, Mariam (Co-author) / Rodenbaugh, Ryan (Co-author) / Sinclair, Brynn (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Psychology (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12