Matching Items (7)
Filtering by

Clear all filters

148347-Thumbnail Image.png
Description

Working with chocolate is a difficult endeavor. However, through the use of additive manufacturing technologies, the labor involved can be reduced. One difficulty is the pumping of the melted chocolate through the system onto the print bed of the printer. In this paper, three systems of transferring chocolate are investigated:

Working with chocolate is a difficult endeavor. However, through the use of additive manufacturing technologies, the labor involved can be reduced. One difficulty is the pumping of the melted chocolate through the system onto the print bed of the printer. In this paper, three systems of transferring chocolate are investigated: A syringe system, a gear pump system, and an auger system. Each system is explained with a model of the proposed system and the pros and cons are discussed. Lastly, a system composed of parts of the syringe and auger system is proposed. The positive and negative aspects of this design are discussed, and a 3D model of the system is given as well. This system is suggested as a better option, and future research can be done to investigate and rate these systems in greater detail. In commercial food applications, these technologies can change the way chocolate is manipulated, and difficult practices can be simplified for home chefs.

ContributorsMester, Daniel (Author) / Chen, Xiangfan (Thesis director) / Gintz, Jerry (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147753-Thumbnail Image.png
Description

The researchers build a drone with a grasping mechanism to wrap around branches to perch. The design process and methodology are discussed along with the software and hardware configuration. The researchers explain the influences on the design and the possibilities for what it could inspire.

ContributorsDowney, Matthew Evan (Co-author) / Macias, Jose (Co-author) / Goldenberg, Edward (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The researchers build a drone with a grasping mechanism to wrap around branches to perch. The design process and methodology are discussed along with the software and hardware configuration. The researchers explain the influences on the design and the possibilities for what it could inspire.

ContributorsGoldenberg, Edward Bradley (Co-author) / Macias, Jose Carlos (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel M. (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147989-Thumbnail Image.png
Description

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it is now time to extend off from this framework. With this Honors Thesis project, we introduce a new function intended to eventually become common to drones. This feature is a grasping mechanism that is capable of perching on branches and carrying loads within the weight limit. This concept stems from the natural behavior of many kinds of insects. It paves the way for drones to further imitate the natural design of flying creatures. Additionally, it serves to advocate for dynamic drone frames, or morphing drone frames, to become more common practice in drone designs.

ContributorsMacias, Jose Carlos (Co-author) / Goldenberg, Edward Bradley (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel (Committee member) / Human Systems Engineering (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Mission aviation groups operate aircraft in areas with limited infrastructure. Existing airdrop methods pose significant risk due to their lack of steerability. This thesis details the development of Manna, a system built to address these concerns. Manna provides an automated, low cost, safe steerable delivery platform, through a custom designed

Mission aviation groups operate aircraft in areas with limited infrastructure. Existing airdrop methods pose significant risk due to their lack of steerability. This thesis details the development of Manna, a system built to address these concerns. Manna provides an automated, low cost, safe steerable delivery platform, through a custom designed parafoil and guidance unit. Flight tests and simulations show that Manna can provide a safer alternative for critical air deliveries.

ContributorsSchlichting, Audrey (Author) / Severinghaus, Lukas (Co-author) / Wende, Anthony (Thesis director) / Delp, Deana (Committee member) / Takahashi, Timothy (Committee member) / Barrett, The Honors College (Contributor) / Aviation Programs (Contributor) / Engineering Programs (Contributor)
Created2023-05
Description

Mission aviation groups operate aircraft in areas with limited infrastructure. Existing airdrop methods pose significant risk due to their lack of steerability. This thesis details the development of Manna, a system built to address these concerns. Manna provides an automated, low cost, safe steerable delivery platform, through a custom designed

Mission aviation groups operate aircraft in areas with limited infrastructure. Existing airdrop methods pose significant risk due to their lack of steerability. This thesis details the development of Manna, a system built to address these concerns. Manna provides an automated, low cost, safe steerable delivery platform, through a custom designed parafoil and guidance unit. Flight tests and simulations show that Manna can provide a safer alternative for critical air deliveries.

ContributorsSeveringhaus, Lukas (Author) / Schlichting, Audrey (Co-author) / Wende, Anthony (Thesis director) / Delp, Deana (Committee member) / Takahashi, Timothy (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2023-05
Description
A swarm of unmanned aerial vehicles (UAVs) has many potential applications including disaster relief, search and rescue, and area surveillance. A critical factor to a UAV swarm’s success is its ability to collectively locate and pursue targets determined to be of high quality with minimal and decentralized communication. Prior work

A swarm of unmanned aerial vehicles (UAVs) has many potential applications including disaster relief, search and rescue, and area surveillance. A critical factor to a UAV swarm’s success is its ability to collectively locate and pursue targets determined to be of high quality with minimal and decentralized communication. Prior work has investigated nature-based solutions to this problem, in particular the behavior of honeybees when making decisions on future nest sites. A UAV swarm may mimic this behavior for similar ends, taking advantage of widespread sensor coverage induced by a large population. To determine whether the proven success of honeybee strategies may still be found in UAV swarms in more complex and difficult conditions, a series of simulations were created in Python using a behavior modeled after the work of Cooke et al. UAV and environmental properties were varied to determine the importance of each to the success of the swarm and to find emergent behaviors caused by combinations of variables. From the simulation work done, it was found that agent population and lifespan were the two most important factors to swarm success, with preference towards small teams with long-lasting UAVs.
ContributorsGao, Max (Author) / Berman, Spring (Thesis director) / Pavlic, Theodore (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor)
Created2023-05