Matching Items (2)
Filtering by

Clear all filters

135425-Thumbnail Image.png
Description
The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor

The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor edge detection method was therefore developed to realize an edge detector directly from spectral data. This thesis explores the possibilities of detecting edges from the phase of the spectral data, that is, without the magnitude of the sampled spectral data. Prior work has demonstrated that the spectral phase contains particularly important information about underlying features in a signal. Furthermore, the concentration factor method yields some insight into the detection of edges in spectral phase data. An iterative design approach was taken to realize an edge detector using only the spectral phase data, also allowing for the design of an edge detector when phase data are intermittent or corrupted. Problem formulations showing the power of the design approach are given throughout. A post-processing scheme relying on the difference of multiple edge approximations yields a strong edge detector which is shown to be resilient under noisy, intermittent phase data. Lastly, a thresholding technique is applied to give an explicit enhanced edge detector ready to be used. Examples throughout are demonstrate both on signals and images.
ContributorsReynolds, Alexander Bryce (Author) / Gelb, Anne (Thesis director) / Cochran, Douglas (Committee member) / Viswanathan, Adityavikram (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134576-Thumbnail Image.png
Description
Research on /r/ production previously used formant analysis as the primary acoustic analysis, with particular focus on the low third formant in the speech signal. Prior imaging of speech used X-Ray, MRI, and electromagnetic midsagittal articulometer systems. More recently, the signal processing technique of Mel-log spectral plots has been used

Research on /r/ production previously used formant analysis as the primary acoustic analysis, with particular focus on the low third formant in the speech signal. Prior imaging of speech used X-Ray, MRI, and electromagnetic midsagittal articulometer systems. More recently, the signal processing technique of Mel-log spectral plots has been used to study /r/ production in children and female adults. Ultrasound imaging of the tongue also has been used to image the tongue during speech production in both clinical and research settings. The current study attempts to describe /r/ production in three different allophonic contexts; vocalic, prevocalic, and postvocalic positions. Ultrasound analysis, formant analysis, Mel-log spectral plots, and /r/ duration were measured for /r/ production in 29 adult speakers (10 male, 19 female). A possible relationship between these variables was also explored. Results showed that the amount of superior constriction in the postvocalic /r/ allophone was significantly lower than the other /r/ allophones. Formant two was significantly lower and the distance between formant two and three was significantly higher for the prevocalic /r/ allophone. Vocalic /r/ had the longest average duration, while prevocalic /r/ had the shortest duration. Signal processing results revealed candidate Mel-bin values for accurate /r/ production for each allophone of /r/. The results indicate that allophones of /r/ can be distinguished based the different analyses. However, relationships between these analyses are still unclear. Future research is needed in order to gather more data on /r/ acoustics and articulation in order to find possible relationships between the analyses for /r/ production.
ContributorsHirsch, Megan Elizabeth (Author) / Weinhold, Juliet (Thesis director) / Gardner, Joshua (Committee member) / Department of Speech and Hearing Science (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05