Matching Items (22)
Filtering by

Clear all filters

135425-Thumbnail Image.png
Description
The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor

The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor edge detection method was therefore developed to realize an edge detector directly from spectral data. This thesis explores the possibilities of detecting edges from the phase of the spectral data, that is, without the magnitude of the sampled spectral data. Prior work has demonstrated that the spectral phase contains particularly important information about underlying features in a signal. Furthermore, the concentration factor method yields some insight into the detection of edges in spectral phase data. An iterative design approach was taken to realize an edge detector using only the spectral phase data, also allowing for the design of an edge detector when phase data are intermittent or corrupted. Problem formulations showing the power of the design approach are given throughout. A post-processing scheme relying on the difference of multiple edge approximations yields a strong edge detector which is shown to be resilient under noisy, intermittent phase data. Lastly, a thresholding technique is applied to give an explicit enhanced edge detector ready to be used. Examples throughout are demonstrate both on signals and images.
ContributorsReynolds, Alexander Bryce (Author) / Gelb, Anne (Thesis director) / Cochran, Douglas (Committee member) / Viswanathan, Adityavikram (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136520-Thumbnail Image.png
Description
Deconvolution of noisy data is an ill-posed problem, and requires some form of regularization to stabilize its solution. Tikhonov regularization is the most common method used, but it depends on the choice of a regularization parameter λ which must generally be estimated using one of several common methods. These methods

Deconvolution of noisy data is an ill-posed problem, and requires some form of regularization to stabilize its solution. Tikhonov regularization is the most common method used, but it depends on the choice of a regularization parameter λ which must generally be estimated using one of several common methods. These methods can be computationally intensive, so I consider their behavior when only a portion of the sampled data is used. I show that the results of these methods converge as the sampling resolution increases, and use this to suggest a method of downsampling to estimate λ. I then present numerical results showing that this method can be feasible, and propose future avenues of inquiry.
ContributorsHansen, Jakob Kristian (Author) / Renaut, Rosemary (Thesis director) / Cochran, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136314-Thumbnail Image.png
Description
The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of digital output to headphones or speakers. Based on this information, the gamer can discern where a particular stimulus is coming from and whether or not that is a threat to their wellbeing within the virtual world. People with reliable hearing have a distinct advantage over hearing impaired people in the fact that they can gather information not just from what is in front of them, but from every angle relative to the way they're facing. The purpose of this project was to find a way to even the playing field, so that a person hard of hearing could also receive the sensory feedback that any other person would get while playing video games To do this, visual surround sound was created. This is a system that takes a surround sound input, and illuminates LEDs around the periphery of glasses based on the direction, frequency and amplitude of the audio wave. This provides the user with crucial information on the whereabouts of different elements within the game. In this paper, the research and development of Visual Surround Sound is discussed along with its viability in regards to a deaf person's ability to learn the technology, and decipher the visual cues.
ContributorsKadi, Danyal (Co-author) / Burrell, Nathaneal (Co-author) / Butler, Kristi (Co-author) / Wright, Gavin (Co-author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
133725-Thumbnail Image.png
Description
Detecting early signs of neurodegeneration is vital for measuring the efficacy of pharmaceuticals and planning treatments for neurological diseases. This is especially true for Amyotrophic Lateral Sclerosis (ALS) where differences in symptom onset can be indicative of the prognosis. Because it can be measured noninvasively, changes in speech production have

Detecting early signs of neurodegeneration is vital for measuring the efficacy of pharmaceuticals and planning treatments for neurological diseases. This is especially true for Amyotrophic Lateral Sclerosis (ALS) where differences in symptom onset can be indicative of the prognosis. Because it can be measured noninvasively, changes in speech production have been proposed as a promising indicator of neurological decline. However, speech changes are typically measured subjectively by a clinician. These perceptual ratings can vary widely between clinicians and within the same clinician on different patient visits, making clinical ratings less sensitive to subtle early indicators. In this paper, we propose an algorithm for the objective measurement of flutter, a quasi-sinusoidal modulation of fundamental frequency that manifests in the speech of some ALS patients. The algorithm detailed in this paper employs long-term average spectral analysis on the residual F0 track of a sustained phonation to detect the presence of flutter and is robust to longitudinal drifts in F0. The algorithm is evaluated on a longitudinal speech dataset of ALS patients at varying stages in their prognosis. Benchmarking with two stages of perceptual ratings provided by an expert speech pathologist indicate that the algorithm follows perceptual ratings with moderate accuracy and can objectively detect flutter in instances where the variability of the perceptual rating causes uncertainty.
ContributorsPeplinski, Jacob Scott (Author) / Berisha, Visar (Thesis director) / Liss, Julie (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135455-Thumbnail Image.png
Description
The increasing presence and affordability of sensors provides the opportunity to make novel and creative designs for underserved markets like the legally blind. Here we explore how mathematical methods and device coordination can be utilized to improve the functionality of inexpensive proximity sensing electronics in order to create designs that

The increasing presence and affordability of sensors provides the opportunity to make novel and creative designs for underserved markets like the legally blind. Here we explore how mathematical methods and device coordination can be utilized to improve the functionality of inexpensive proximity sensing electronics in order to create designs that are versatile, durable, low cost, and simple. Devices utilizing various acoustic and electromagnetic wave frequencies like ultrasonic rangefinders, radars, Lidar rangefinders, webcams, and infrared rangefinders and the concepts of Sensor Fusion, Frequency Modulated Continuous Wave radar, and Phased Arrays were explored. The effects of various factors on the propagation of different wave signals was also investigated. The devices selected to be incorporated into designs were the HB100 DRO Radar Doppler Sensor (as an FMCW radar), HC-SR04 Ultrasonic Sensor, and Maxbotix Ultrasonic Rangefinder \u2014 EZ3. Three designs were ultimately developed and dubbed the "Rad-Son Fusion", the "Tri-Beam Scanner", and the "Dual-Receiver Ranger". The "Rad-Son Fusion" employs the Sensor Fusion of an FMCW radar and Ultrasonic sensor through a weighted average of the distance reading from the two sensors. The "Tri-Beam Scanner" utilizes a beam-forming Digital Phased Array of ultrasonic sensors to scan its surroundings. The "Dual-Receiver Ranger" uses the convolved result from to two modified HC-SR04 sensors to determine the time of flight and ultimately an object's distance. After conducting hardware experiments to determine the feasibility of each design, the "Dual-Receiver Ranger" was prototyped and tested to demonstrate the potential of the concept. The designs were later compared based on proposed requirements and possible improvements and challenges associated with the designs are discussed.
ContributorsFeinglass, Joshua Forster (Author) / Goryll, Michael (Thesis director) / Reisslein, Martin (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05