Matching Items (8)
Filtering by

Clear all filters

153915-Thumbnail Image.png
Description
Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most methods utilizing an observability metric are about sensor selection and not for sensor scheduling. In this dissertation we present a new approach to utilize the observability for sensor scheduling by employing the condition number of the observability matrix as the metric and using column subset selection to create an algorithm to choose which sensors to use at each time step. To this end we use a rank revealing QR factorization algorithm to select sensors. Several numerical experiments are used to demonstrate the performance of the proposed scheme.
ContributorsIlkturk, Utku (Author) / Gelb, Anne (Thesis advisor) / Platte, Rodrigo (Thesis advisor) / Cochran, Douglas (Committee member) / Renaut, Rosemary (Committee member) / Armbruster, Dieter (Committee member) / Arizona State University (Publisher)
Created2015
156805-Thumbnail Image.png
Description
Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have opened up new opportunities of research across various departments and this dissertation is a manifestation of it. Here, some unique studies have been presented, from which valuable inference have been drawn for a real-world complex system. Each study has its own unique sets of motivation and relevance to the real world. An ensemble of signal processing (SP) and ML techniques have been explored in each study. This dissertation provides the detailed systematic approach and discusses the results achieved in each study. Valuable inferences drawn from each study play a vital role in areas of science and technology, and it is worth further investigation. This dissertation also provides a set of useful SP and ML tools for researchers in various fields of interest.
ContributorsDutta, Arindam (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Richmond, Christ (Committee member) / Corman, Steven (Committee member) / Arizona State University (Publisher)
Created2018
156974-Thumbnail Image.png
Description
As the demand for wireless systems increases exponentially, it has become necessary

for different wireless modalities, like radar and communication systems, to share the

available bandwidth. One approach to realize coexistence successfully is for each

system to adopt a transmit waveform with a unique nonlinear time-varying phase

function. At the receiver of the system

As the demand for wireless systems increases exponentially, it has become necessary

for different wireless modalities, like radar and communication systems, to share the

available bandwidth. One approach to realize coexistence successfully is for each

system to adopt a transmit waveform with a unique nonlinear time-varying phase

function. At the receiver of the system of interest, the waveform received for process-

ing may still suffer from low signal-to-interference-plus-noise ratio (SINR) due to the

presence of the waveforms that are matched to the other coexisting systems. This

thesis uses a time-frequency based approach to increase the SINR of a system by estimating the unique nonlinear instantaneous frequency (IF) of the waveform matched

to the system. Specifically, the IF is estimated using the synchrosqueezing transform,

a highly localized time-frequency representation that also enables reconstruction of

individual waveform components. As the IF estimate is biased, modified versions of

the transform are investigated to obtain estimators that are both unbiased and also

matched to the unique nonlinear phase function of a given waveform. Simulations

using transmit waveforms of coexisting wireless systems are provided to demonstrate

the performance of the proposed approach using both biased and unbiased IF estimators.
ContributorsGattani, Vineet Sunil (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Richmond, Christ (Committee member) / Maurer, Alexander (Committee member) / Arizona State University (Publisher)
Created2018
135425-Thumbnail Image.png
Description
The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor

The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor edge detection method was therefore developed to realize an edge detector directly from spectral data. This thesis explores the possibilities of detecting edges from the phase of the spectral data, that is, without the magnitude of the sampled spectral data. Prior work has demonstrated that the spectral phase contains particularly important information about underlying features in a signal. Furthermore, the concentration factor method yields some insight into the detection of edges in spectral phase data. An iterative design approach was taken to realize an edge detector using only the spectral phase data, also allowing for the design of an edge detector when phase data are intermittent or corrupted. Problem formulations showing the power of the design approach are given throughout. A post-processing scheme relying on the difference of multiple edge approximations yields a strong edge detector which is shown to be resilient under noisy, intermittent phase data. Lastly, a thresholding technique is applied to give an explicit enhanced edge detector ready to be used. Examples throughout are demonstrate both on signals and images.
ContributorsReynolds, Alexander Bryce (Author) / Gelb, Anne (Thesis director) / Cochran, Douglas (Committee member) / Viswanathan, Adityavikram (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135987-Thumbnail Image.png
Description
Edge detection plays a significant role in signal processing and image reconstruction applications where it is used to identify important features in the underlying signal or image. In some of these applications, such as magnetic resonance imaging (MRI), data are sampled in the Fourier domain. When the data are sampled

Edge detection plays a significant role in signal processing and image reconstruction applications where it is used to identify important features in the underlying signal or image. In some of these applications, such as magnetic resonance imaging (MRI), data are sampled in the Fourier domain. When the data are sampled uniformly, a variety of algorithms can be used to efficiently extract the edges of the underlying images. However, in cases where the data are sampled non-uniformly, such as in non-Cartesian MRI, standard inverse Fourier transformation techniques are no longer suitable. Methods exist for handling these types of sampling patterns, but are often ill-equipped for cases where data are highly non-uniform. This thesis further develops an existing approach to discontinuity detection, the use of concentration factors. Previous research shows that the concentration factor technique can successfully determine jump discontinuities in non-uniform data. However, as the distribution diverges further away from uniformity so does the efficacy of the identification. This thesis proposes a method for reverse-engineering concentration factors specifically tailored to non-uniform data by employing the finite Fourier frame approximation. Numerical results indicate that this design method produces concentration factors which can more precisely identify jump locations than those previously developed.
ContributorsMoore, Rachael (Author) / Gelb, Anne (Thesis director) / Davis, Jacueline (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
157701-Thumbnail Image.png
Description
Eigenvalues of the Gram matrix formed from received data frequently appear in sufficient detection statistics for multi-channel detection with Generalized Likelihood Ratio (GLRT) and Bayesian tests. In a frequently presented model for passive radar, in which the null hypothesis is that the channels are independent and contain only complex white

Eigenvalues of the Gram matrix formed from received data frequently appear in sufficient detection statistics for multi-channel detection with Generalized Likelihood Ratio (GLRT) and Bayesian tests. In a frequently presented model for passive radar, in which the null hypothesis is that the channels are independent and contain only complex white Gaussian noise and the alternative hypothesis is that the channels contain a common rank-one signal in the mean, the GLRT statistic is the largest eigenvalue $\lambda_1$ of the Gram matrix formed from data. This Gram matrix has a Wishart distribution. Although exact expressions for the distribution of $\lambda_1$ are known under both hypotheses, numerically calculating values of these distribution functions presents difficulties in cases where the dimension of the data vectors is large. This dissertation presents tractable methods for computing the distribution of $\lambda_1$ under both the null and alternative hypotheses through a technique of expanding known expressions for the distribution of $\lambda_1$ as inner products of orthogonal polynomials. These newly presented expressions for the distribution allow for computation of detection thresholds and receiver operating characteristic curves to arbitrary precision in floating point arithmetic. This represents a significant advancement over the state of the art in a problem that could previously only be addressed by Monte Carlo methods.
ContributorsJones, Scott, Ph.D (Author) / Cochran, Douglas (Thesis advisor) / Berisha, Visar (Committee member) / Bliss, Daniel (Committee member) / Kosut, Oliver (Committee member) / Richmond, Christ (Committee member) / Arizona State University (Publisher)
Created2019
157757-Thumbnail Image.png
Description
In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it offers relatively cheap, parametrically dynamic, off-the-shelf access to the Radiofrequency (RF) spectrum. For this application, the Universal Software Radio Peripheral

In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it offers relatively cheap, parametrically dynamic, off-the-shelf access to the Radiofrequency (RF) spectrum. For this application, the Universal Software Radio Peripheral (USRP) X310 hardware package is utilized with GNURadio for interfacing to the device and Matlab for signal post- processing. Pulse doppler radar processing is used to ascertain the range and velocity of a target considered in simulation and in real, over-the-air (OTA) experiments. The USRP platform offers a scalable and dynamic hardware package that can, with relatively low overhead, be incorporated into other experimental systems. This radar system will be considered for implementation into existing over-the-air Joint Radar- Communications (JRC) spectrum sharing experiments. The JRC system considers a co-designed architecture in which a communications user and a radar user share the same spectral allocation. Where the two systems would traditionally consider one another a source of interference, the receiver is able to decode communications information and discern target information via pulse-doppler radar simultaneously.
ContributorsGubash, Gerard (Author) / Bliss, Daniel W (Thesis advisor) / Richmond, Christ (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2019
132193-Thumbnail Image.png
Description
Power spectral analysis is a fundamental aspect of signal processing used in the detection and \\estimation of various signal features. Signals spaced closely in frequency are problematic and lead analysts to miss crucial details surrounding the data. The Capon and Bartlett methods are non-parametric filterbank approaches to power spectrum estimation.

Power spectral analysis is a fundamental aspect of signal processing used in the detection and \\estimation of various signal features. Signals spaced closely in frequency are problematic and lead analysts to miss crucial details surrounding the data. The Capon and Bartlett methods are non-parametric filterbank approaches to power spectrum estimation. The Capon algorithm is known as the "adaptive" approach to power spectrum estimation because its filter impulse responses are adapted to fit the characteristics of the data. The Bartlett method is known as the "conventional" approach to power spectrum estimation (PSE) and has a fixed deterministic filter. Both techniques rely on the Sample Covariance Matrix (SCM). The first objective of this project is to analyze the origins and characteristics of the Capon and Bartlett methods to understand their abilities to resolve signals closely spaced in frequency. Taking into consideration the Capon and Bartlett's reliance on the SCM, there is a novelty in combining these two algorithms using their cross-coherence. The second objective of this project is to analyze the performance of the Capon-Bartlett Cross Spectra. This study will involve Matlab simulations of known test cases and comparisons with approximate theoretical predictions.
ContributorsYoshiyama, Cassidy (Author) / Richmond, Christ (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05