Matching Items (6)

Filtering by

Clear all filters

136520-Thumbnail Image.png

Downsampling for Efficient Parameter Choice in Ill-Posed Deconvolution Problems

Description

Deconvolution of noisy data is an ill-posed problem, and requires some form of regularization to stabilize its solution. Tikhonov regularization is the most common method used, but it depends on the choice of a regularization parameter λ which must generally

Deconvolution of noisy data is an ill-posed problem, and requires some form of regularization to stabilize its solution. Tikhonov regularization is the most common method used, but it depends on the choice of a regularization parameter λ which must generally be estimated using one of several common methods. These methods can be computationally intensive, so I consider their behavior when only a portion of the sampled data is used. I show that the results of these methods converge as the sampling resolution increases, and use this to suggest a method of downsampling to estimate λ. I then present numerical results showing that this method can be feasible, and propose future avenues of inquiry.

Contributors

Agent

Created

Date Created
2015-05

135425-Thumbnail Image.png

Edge Detection from Spectral Phase Data

Description

The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples

The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor edge detection method was therefore developed to realize an edge detector directly from spectral data. This thesis explores the possibilities of detecting edges from the phase of the spectral data, that is, without the magnitude of the sampled spectral data. Prior work has demonstrated that the spectral phase contains particularly important information about underlying features in a signal. Furthermore, the concentration factor method yields some insight into the detection of edges in spectral phase data. An iterative design approach was taken to realize an edge detector using only the spectral phase data, also allowing for the design of an edge detector when phase data are intermittent or corrupted. Problem formulations showing the power of the design approach are given throughout. A post-processing scheme relying on the difference of multiple edge approximations yields a strong edge detector which is shown to be resilient under noisy, intermittent phase data. Lastly, a thresholding technique is applied to give an explicit enhanced edge detector ready to be used. Examples throughout are demonstrate both on signals and images.

Contributors

Agent

Created

Date Created
2016-05

150929-Thumbnail Image.png

Bayesian networks and gaussian mixture models in multi-dimensional data analysis with application to religion-conflict data

Description

This thesis examines the application of statistical signal processing approaches to data arising from surveys intended to measure psychological and sociological phenomena underpinning human social dynamics. The use of signal processing methods for analysis of signals arising from measurement of

This thesis examines the application of statistical signal processing approaches to data arising from surveys intended to measure psychological and sociological phenomena underpinning human social dynamics. The use of signal processing methods for analysis of signals arising from measurement of social, biological, and other non-traditional phenomena has been an important and growing area of signal processing research over the past decade. Here, we explore the application of statistical modeling and signal processing concepts to data obtained from the Global Group Relations Project, specifically to understand and quantify the effects and interactions of social psychological factors related to intergroup conflicts. We use Bayesian networks to specify prospective models of conditional dependence. Bayesian networks are determined between social psychological factors and conflict variables, and modeled by directed acyclic graphs, while the significant interactions are modeled as conditional probabilities. Since the data are sparse and multi-dimensional, we regress Gaussian mixture models (GMMs) against the data to estimate the conditional probabilities of interest. The parameters of GMMs are estimated using the expectation-maximization (EM) algorithm. However, the EM algorithm may suffer from over-fitting problem due to the high dimensionality and limited observations entailed in this data set. Therefore, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are used for GMM order estimation. To assist intuitive understanding of the interactions of social variables and the intergroup conflicts, we introduce a color-based visualization scheme. In this scheme, the intensities of colors are proportional to the conditional probabilities observed.

Contributors

Agent

Created

Date Created
2012

153915-Thumbnail Image.png

Observability methods in sensor scheduling

Description

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most methods utilizing an observability metric are about sensor selection and not for sensor scheduling. In this dissertation we present a new approach to utilize the observability for sensor scheduling by employing the condition number of the observability matrix as the metric and using column subset selection to create an algorithm to choose which sensors to use at each time step. To this end we use a rank revealing QR factorization algorithm to select sensors. Several numerical experiments are used to demonstrate the performance of the proposed scheme.

Contributors

Agent

Created

Date Created
2015

158716-Thumbnail Image.png

Model-Based Machine Learning for the Power Grid

Description

The availability of data for monitoring and controlling the electrical grid has increased exponentially over the years in both resolution and quantity leaving a large data footprint. This dissertation is motivated by the need for equivalent representations of

The availability of data for monitoring and controlling the electrical grid has increased exponentially over the years in both resolution and quantity leaving a large data footprint. This dissertation is motivated by the need for equivalent representations of grid data in lower-dimensional feature spaces so that machine learning algorithms can be employed for a variety of purposes. To achieve that, without sacrificing the interpretation of the results, the dissertation leverages the physics behind power systems, well-known laws that underlie this man-made infrastructure, and the nature of the underlying stochastic phenomena that define the system operating conditions as the backbone for modeling data from the grid.

The first part of the dissertation introduces a new framework of graph signal processing (GSP) for the power grid, Grid-GSP, and applies it to voltage phasor measurements that characterize the overall system state of the power grid. Concepts from GSP are used in conjunction with known power system models in order to highlight the low-dimensional structure in data and present generative models for voltage phasors measurements. Applications such as identification of graphical communities, network inference, interpolation of missing data, detection of false data injection attacks and data compression are explored wherein Grid-GSP based generative models are used.

The second part of the dissertation develops a model for a joint statistical description of solar photo-voltaic (PV) power and the outdoor temperature which can lead to better management of power generation resources so that electricity demand such as air conditioning and supply from solar power are always matched in the face of stochasticity. The low-rank structure inherent in solar PV power data is used for forecasting and to detect partial-shading type of faults in solar panels.

Contributors

Agent

Created

Date Created
2020

166161-Thumbnail Image.png

Demodulation and Leading-Edge Detection for LiDAR Pulses

Description

The idea for this thesis emerged from my senior design capstone project, A Wearable Threat Awareness System. A TFmini-S LiDAR sensor is used as one component of this system; the functionality of and signal processing behind this type of sensor

The idea for this thesis emerged from my senior design capstone project, A Wearable Threat Awareness System. A TFmini-S LiDAR sensor is used as one component of this system; the functionality of and signal processing behind this type of sensor are elucidated in this document. Conceptual implementations of the optical and digital stages of the signal processing is described in some detail. Following an introduction in which some general background knowledge about LiDAR is set forth, the body of the thesis is organized into two main sections. The first section focuses on optical processing to demodulate the received signal backscattered from the target object. This section describes the key steps in demodulation and illustrates them with computer simulation. A series of graphs capture the mathematical form of the signal as it progresses through the optical processing stages, ultimately yielding the baseband envelope which is converted to digital form for estimation of the leading edge of the pulse waveform using a digital algorithm. The next section is on range estimation. It describes the digital algorithm designed to estimate the arrival time of the leading edge of the optical pulse signal. This enables the pulse’s time of flight to be estimated, thus determining the distance between the LiDAR and the target. Performance of this algorithm is assessed with four different levels of noise. A calculation of the error in the leading-edge detection in terms of distance is also included to provide more insight into the algorithm’s accuracy.

Contributors

Agent

Created

Date Created
2022-05