Matching Items (3)
Filtering by

Clear all filters

137671-Thumbnail Image.png
Description
NGExtract 2 is a complete transistor (MOSFET) parameter extraction solution based upon the original computer program NGExtract by Rahul Shringarpure written in February 2007. NGExtract 2 is written in Java and based around the circuit simulator NGSpice. The goal of the program is to be used to produce

NGExtract 2 is a complete transistor (MOSFET) parameter extraction solution based upon the original computer program NGExtract by Rahul Shringarpure written in February 2007. NGExtract 2 is written in Java and based around the circuit simulator NGSpice. The goal of the program is to be used to produce accurate transistor models based around real-world transistor data. The program contains numerous improvements to the original program:
• Completely rewritten with performance and usability in mind
• Cross-Platform vs. Linux Only
• Simple installation procedure vs. compilation and manual library configuration
• Self-contained, single file runtime
• Particle Swarm Optimization routine
NGExtract 2 works by plotting the Ids vs. Vds and Ids vs. Vgs curves of a simulation model and the measured, real-world data. The user can adjust model parameters and re-simulate to attempt to match the curves. The included Particle Swarm Optimization routine attempts to automate this process by iteratively attempting to improve a solution by measuring its sum-squared error against the real-world data that the user has provided.
ContributorsVetrano, Michael Thomas (Author) / Allee, David (Thesis director) / Gorur, Ravi (Committee member) / Bakkaloglu, Bertan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
132021-Thumbnail Image.png
Description
Machine learning is a powerful tool for processing and understanding the vast amounts of data produced by sensors every day. Machine learning has found use in a wide variety of fields, from making medical predictions through correlations invisible to the human eye to classifying images in computer vision applications. A

Machine learning is a powerful tool for processing and understanding the vast amounts of data produced by sensors every day. Machine learning has found use in a wide variety of fields, from making medical predictions through correlations invisible to the human eye to classifying images in computer vision applications. A wide range of machine learning algorithms have been developed to attempt to solve these problems, each with different metrics in accuracy, throughput, and energy efficiency. However, even after they are trained, these algorithms require substantial computations to make a prediction. General-purpose CPUs are not well-optimized to this task, so other hardware solutions have developed over time, including the use of a GPU, FPGA, or ASIC.

This project considers the FPGA implementations of MLP and CNN feedforward. While FPGAs provide significant performance improvements, they come at a substantial financial cost. We explore the options of implementing these algorithms on a smaller budget. We successfully implement a multilayer perceptron that identifies handwritten digits from the MNIST dataset on a student-level DE10-Lite FPGA with a test accuracy of 91.99%. We also apply our trained network to external image data loaded through a webcam and a Raspberry Pi, but we observe lower test accuracy in these images. Later, we consider the requirements necessary to implement a more elaborate convolutional neural network on the same FPGA. The study deems the CNN implementation feasible in the criteria of memory requirements and basic architecture. We suggest the CNN implementation on the same FPGA to be worthy of further exploration.
ContributorsLythgoe, Zachary James (Author) / Allee, David (Thesis director) / Hartin, Olin (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
164466-Thumbnail Image.png
Description
Precise Position, Navigation, and Timing (PNT) is necessary for the functioning of many critical infrastructure sectors relied upon by millions every day. Specifically, precise timing is primarily provided through the Global Positioning System (GPS) and its system of satellites that each house multiple atomic clocks. Without precise timing, utilities such

Precise Position, Navigation, and Timing (PNT) is necessary for the functioning of many critical infrastructure sectors relied upon by millions every day. Specifically, precise timing is primarily provided through the Global Positioning System (GPS) and its system of satellites that each house multiple atomic clocks. Without precise timing, utilities such as the internet, the power grid, navigational systems, and financial systems would cease operation. Because oscillator devices experience frequency drift during operation, many systems rely on the precise time provided by GPS to maintain synchronization across the globe. However, GPS signals are particularly susceptible to disruption – both intentional and unintentional – due to their space-based, low-power, and unencrypted nature. It is for these reasons that there is a need to develop a system that can provide an accurate timing reference – one disciplined by a GPS signal – and can also maintain its nominal frequency in scenarios of intermittent GPS availability. This project considers an accurate timing reference deployed via Field Programmable Gate Array (FPGA) and disciplined by a GPS module. The objective is to implement a timing reference on a DE10-Lite FPGA disciplined by the 1 Pulse-Per-Second (PPS) output of an MTK3333 GPS module. When a signal lock is achieved with GPS, the MTK3333 delivers a pulse input to the FPGA on the leading edge of every second. The FPGA aligns a digital oscillator to this PPS reference, providing a disciplined output signal at a 10 MHz frequency that is maintained in events of intermittent GPS availability. The developed solution is evaluated using a frequency counter disciplined by an atomic clock in addition to an oscilloscope. The findings deem the software solution acceptable with more work needed to debug the hardware solution
ContributorsWitthus, Alexander (Author) / Allee, David (Thesis director) / Hartin, Olin (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05