Matching Items (4)
Filtering by

Clear all filters

137838-Thumbnail Image.png
Description
This project aims to provide a contextualized history of the Sky Harbor Neighborhood Association‟s community collective action efforts. The Sky Harbor Neighborhood (SHN) of East Phoenix is bounded on the West by 24th St., on the East by 32nd St., on the North by Roosevelt St., and the South by

This project aims to provide a contextualized history of the Sky Harbor Neighborhood Association‟s community collective action efforts. The Sky Harbor Neighborhood (SHN) of East Phoenix is bounded on the West by 24th St., on the East by 32nd St., on the North by Roosevelt St., and the South by Washington Street. SHN is a majority Latino, low-income, working class community (U.S. Census Bureau, 2010) that faces a variety of challenges including low walkability due to inadequate pedestrian infrastructure, low tree coverage, and crime. East Van Buren St., which has a reputation for being one of Phoenix‟s red-light districts, splits the neighborhood in two. In addition, the SHN lacks some key amenities such as grocery stores and is partly considered a food desert by the United States Department of Agriculture (USDA Economic Research Service, 2012).
ContributorsPearson, Kimberly (Author) / Golub, Aaron (Thesis director) / Wiek, Arnim (Committee member) / York, Abigail (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Sustainability (Contributor)
Created2012-12
137847-Thumbnail Image.png
Description
Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median

Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median survival time is only twelve months from initial diagnosis: Patients who live more than three years are considered long-term survivors [2]. GBMs are highly invasive and their diffusive growth pattern makes it impossible to remove the tumors by surgery alone [3]. The purpose of this paper is to use individual patient data to parameterize a model of GBMs that allows for data on tumor growth and development to be captured on a clinically relevant time scale. Such an endeavor is the rst step to a clinically applicable predictions of GBMs. Previous research has yielded models that adequately represent the development of GBMs, but they have not attempted to follow specic patient cases through the entire tumor process. Using the model utilized by Kostelich et al. [4], I will attempt to redress this deciency. In doing so, I will improve upon a family of models that can be used to approximate the time of development and/or structure evolution in GBMs. The eventual goal is to incorporate Magnetic Resonance Imaging (MRI) data into a parameterized model of GBMs in such a way that it can be used clinically to predict tumor growth and behavior. Furthermore, I hope to come to a denitive conclusion as to the accuracy of the Koteslich et al. model throughout the development of GBMs tumors.
ContributorsManning, Miles (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Preul, Mark (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137859-Thumbnail Image.png
Description
Glioblastoma multiforme is associated with a very low survival rate and is recognized as the most vicious form of intracranial cancer. The Akt gene pathway has three different isoforms, each of which has a different role in the tumors of GBM. Preliminary data suggests that Akt3 may work to decrease

Glioblastoma multiforme is associated with a very low survival rate and is recognized as the most vicious form of intracranial cancer. The Akt gene pathway has three different isoforms, each of which has a different role in the tumors of GBM. Preliminary data suggests that Akt3 may work to decrease tumorigenicity. A produced image that visualizes the subcellular localization of Akt3 led the author to believe that Akt3 may reduce tumorigenicity by decreasing genomic instability caused by the cancer. To explore this, flow cytometry was performed on GBM cell lines with Akt3v1 over-expression, Akt3v2 over-expression, and a control glioma cell line.
ContributorsGhorayeb, Antoine (Author) / Neisewander, Janet (Thesis director) / Diehnelt, Chris (Committee member) / Moussallem, Suzan (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137863-Thumbnail Image.png
Description
Microfinance is a term that refers to providing basic financial services to the poor; it has become a powerful tool for poverty alleviation. The idea is a relatively new one - modern microfinance began through experiments in the 1970's - but it has grown quickly and currently serves over 155

Microfinance is a term that refers to providing basic financial services to the poor; it has become a powerful tool for poverty alleviation. The idea is a relatively new one - modern microfinance began through experiments in the 1970's - but it has grown quickly and currently serves over 155 million clients worldwide. There are many studies that provide evidence of the positive impact of microfinance and the movement has an array of enthusiastic proponents. It is certainly not the only solution in the battle against poverty, however, and there are also studies that question the true depth of its impact. In looking at microfinance around the globe, one thing becomes clear: although it is an international phenomenon, microfinance has definitely found more success in some regions over others.
ContributorsEdgell, Bailey (Author) / Mendez, Jose (Thesis director) / Schoellman, Todd (Committee member) / Forbes, Stephen (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12