Matching Items (2)
Filtering by

Clear all filters

155279-Thumbnail Image.png
Description
Background: Stroke is a leading cause of long-term disability in the United States (US). Assisted Cycling Therapy (ACT) incorporates the use of an electric motor to enhance the rotations per minute (rpm). ACT of about 80 rpm, has been associated with improvements in motor, cognitive, and clinical function. The acute

Background: Stroke is a leading cause of long-term disability in the United States (US). Assisted Cycling Therapy (ACT) incorporates the use of an electric motor to enhance the rotations per minute (rpm). ACT of about 80 rpm, has been associated with improvements in motor, cognitive, and clinical function. The acute effects of ACT on motor and cognitive function of persons with stroke induced deficits have not been investigated.

Purpose: To compare the acute effects of ACT, voluntary cycling (VC), and no cycling (NC) on upper and lower extremity motor function and executive function in adults with chronic stroke (age: 60 ± 16 years; months since stroke: 96 ± 85).

Methods: Twenty-two participants (gender: female = 6, male = 16; types: ischemic = 12, hemorrhagic = 10; sides: left lesion = 15, right lesion = 7) completed one session of ACT, one session of VC and one session of NC on separate days using a 3 x 3 crossover design.

Results: ACT lead to greater improvements in lower and upper extremity function on the paretic and non-paretic side than VC or NC (all p < 0.05), except in the non-paretic lower extremity where ACT and VC produced similar improvement (both p < 0.05). ACT and VC, but not NC, were associated with improvements in inhibition (p < 0.05). A positive relationship between cadence and motor function (P < 0.05) was found. Ratings of perceived exertion shared an inverted-U shaped relationship with measures of processing speed (p < 0.05) and a negative linear relationship with measures of executive function (p < 0.05).

Conclusion: ACT appears to benefit paretic and non-paretic motor function globally whereas the benefits of VC are more task specific. Faster cycling cadence was associated with greater improvements in global motor function. ACT and VC seem to carry similar acute benefits in inhibition.
ContributorsHolzapfel, Simon D (Author) / Ringenbach, Shannon D (Thesis advisor) / Bosch, Pamela R (Committee member) / Lee, Chong D (Committee member) / Der Ananian, Cheryl A (Committee member) / Hooker, Steven P (Committee member) / Arizona State University (Publisher)
Created2017
131986-Thumbnail Image.png
Description
An experimental investigation was conducted to calculate the aerodynamic drag on a cyclist wearing different types of clothing. The different outfits worn for this experiment were a professional skinsuit, a professional cycling kit, a t-shirt and shorts, and a long-sleeved flannel and jeans. The aerodynamic drag was ultimately found using

An experimental investigation was conducted to calculate the aerodynamic drag on a cyclist wearing different types of clothing. The different outfits worn for this experiment were a professional skinsuit, a professional cycling kit, a t-shirt and shorts, and a long-sleeved flannel and jeans. The aerodynamic drag was ultimately found using the coast down method, a process in which a cyclist increases their speed to a chosen maximum threshold, and upon reaching this speed, ceases the pedal stroke and maintains the aero position until the bicycle comes to a stop. The data was gathered using an AeroPod, speed sensor, and GPS unit. The data gathered was imported into Excel for data analysis. The average CdA values at race speed (26-30 ft/s) for the skinsuit, cycling kit, t-shirt and shorts, and flannel were calculated to be 4.180 ft2, 3.668 ft2, 4.884 ft2, and 4.223 ft2, respectively. These race speed averages were found using data from three separate Ironman Triathlons. The cycling kit was found to be the most aerodynamic at the race speed. The results of this study reveal that cycling apparel can only be optimized for a small range of speeds and cycling outside of this optimal range delays the initiation of the reduction of boundary layer separation, thus resulting in more critical time spent in the flow transition region. The skinsuit’s performance was more aerodynamically efficient than the cycling kit at speeds greater than 36.8 mph. The cycling kit is more aerodynamic for speeds slower than 36.8 mph. The slickness of the skinsuit was found to be detrimental to the cyclist’s aerodynamic drag, as the lack of roughness on the skinsuit prevented the initiation of turbulent flow, which results in a decrease in drag. Overall, the experiment confirmed the hypothesis that a cyclist is more aerodynamic when wearing cycling apparel as opposed to casual, loose-fitting clothing.
ContributorsGlynn, Julia Daniel (Co-author) / Duffy, Kyle (Co-author) / Takahashi, Timothy (Thesis director) / Bergmann, Ande (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12