Matching Items (13)
Filtering by

Clear all filters

152070-Thumbnail Image.png
Description
When surgical resection becomes necessary to alleviate a patient's epileptiform activity, that patient is monitored by video synchronized with electrocorticography (ECoG) to determine the type and location of seizure focus. This provides a unique opportunity for researchers to gather neurophysiological data with high temporal and spatial resolution; these data are

When surgical resection becomes necessary to alleviate a patient's epileptiform activity, that patient is monitored by video synchronized with electrocorticography (ECoG) to determine the type and location of seizure focus. This provides a unique opportunity for researchers to gather neurophysiological data with high temporal and spatial resolution; these data are assessed prior to surgical resection to ensure the preservation of the patient's quality of life, e.g. avoid the removal of brain tissue required for speech processing. Currently considered the "gold standard" for the mapping of cortex, electrical cortical stimulation (ECS) involves the systematic activation of pairs of electrodes to localize functionally specific brain regions. This method has distinct limitations, which often includes pain experienced by the patient. Even in the best cases, the technique suffers from subjective assessments on the parts of both patients and physicians, and high inter- and intra-observer variability. Recent advances have been made as researchers have reported the localization of language areas through several signal processing methodologies, all necessitating patient participation in a controlled experiment. The development of a quantification tool to localize speech areas in which a patient is engaged in an unconstrained interpersonal conversation would eliminate the dependence of biased patient and reviewer input, as well as unnecessary discomfort to the patient. Post-hoc ECoG data were gathered from five patients with intractable epilepsy while each was engaged in a conversation with family members or clinicians. After the data were separated into different speech conditions, the power of each was compared to baseline to determine statistically significant activated electrodes. The results of several analytical methods are presented here. The algorithms did not yield language-specific areas exclusively, as broad activation of statistically significant electrodes was apparent across cortical areas. For one patient, 15 adjacent contacts along superior temporal gyrus (STG) and posterior part of the temporal lobe were determined language-significant through a controlled experiment. The task involved a patient lying in bed listening to repeated words, and yielded statistically significant activations that aligned with those of clinical evaluation. The results of this study do not support the hypothesis that unconstrained conversation may be used to localize areas required for receptive and productive speech, yet suggests a simple listening task may be an adequate alternative to direct cortical stimulation.
ContributorsLingo VanGilder, Jennapher (Author) / Helms Tillery, Stephen I (Thesis advisor) / Wahnoun, Remy (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2013
151552-Thumbnail Image.png
Description
The use of bias indicators in psychological measurement has been contentious, with some researchers questioning whether they actually suppress or moderate the ability of substantive psychological indictors to discriminate (McGrath, Mitchell, Kim, & Hough, 2010). Bias indicators on the MMPI-2-RF (F-r, Fs, FBS-r, K-r, and L-r) were tested for suppression

The use of bias indicators in psychological measurement has been contentious, with some researchers questioning whether they actually suppress or moderate the ability of substantive psychological indictors to discriminate (McGrath, Mitchell, Kim, & Hough, 2010). Bias indicators on the MMPI-2-RF (F-r, Fs, FBS-r, K-r, and L-r) were tested for suppression or moderation of the ability of the RC1 and NUC scales to discriminate between Epileptic Seizures (ES) and Non-epileptic Seizures (NES, a conversion disorder that is often misdiagnosed as ES). RC1 and NUC had previously been found to be the best scales on the MMPI-2-RF to differentiate between ES and NES, with optimal cut scores occurring at a cut score of 65 for RC1 (classification rate of 68%) and 85 for NUC (classification rate of 64%; Locke et al., 2010). The MMPI-2-RF was completed by 429 inpatients on the Epilepsy Monitoring Unit (EMU) at the Scottsdale Mayo Clinic Hospital, all of whom had confirmed diagnoses of ES or NES. Moderated logistic regression was used to test for moderation and logistic regression was used to test for suppression. Classification rates of RC1 and NUC were calculated at different bias level indicators to evaluate clinical utility for diagnosticians. No moderation was found. Suppression was found for F-r, Fs, K-r, and L-r with RC1, and for all variables with NUC. For F-r and Fs, the optimal RC1 and NUC cut scores increased at higher levels of bias, but tended to decrease at higher levels of K-r, L-r, and FBS-r. K-r provided the greatest suppression for RC1, as well as the greatest increases in classification rates at optimal cut scores, given different levels of bias. It was concluded that, consistent with expectations, taking account of bias indicator suppression on the MMPI-2-RF can improve discrimination of ES and NES. At higher levels of negative impression management, higher cut scores on substantive scales are needed to attain optimal discrimination, whereas at higher levels of positive impression management and FBS-r, lower cut scores are needed. Using these new cut scores resulted in modest improvements in accuracy in discrimination. These findings are consistent with prior research in showing the efficacy of bias indicators, and extend the findings to a psycho-medical context.
ContributorsWershba, Rebecca E (Author) / Lanyon, Richard I (Thesis advisor) / Barrera, Manuel (Committee member) / Karoly, Paul (Committee member) / Millsap, Roger E (Committee member) / Arizona State University (Publisher)
Created2013
149959-Thumbnail Image.png
Description
ABSTRACT Epilepsy is a neurological condition that sometimes pervades all domains of an affected child's life. At school, three specific threats to the wellbeing of children with epilepsy exist: (1) seizure-related injuries, (2) academic problems, and (3) stigmatization. Unfortunately, educators frequently fail to take into account educationally-relevant epilepsy

ABSTRACT Epilepsy is a neurological condition that sometimes pervades all domains of an affected child's life. At school, three specific threats to the wellbeing of children with epilepsy exist: (1) seizure-related injuries, (2) academic problems, and (3) stigmatization. Unfortunately, educators frequently fail to take into account educationally-relevant epilepsy information when making important decisions. One possible explanation for this is that parents are not sharing such information with teachers. This study surveyed 16 parents of children with epilepsy in order to determine the rate at which they disclosed the epilepsy diagnoses to their children's teachers, as well as the difficulty with which they made the decision to disclose or withhold such information. In addition, the relationships between such disclosure and parent-participants' perceptions of the risks of epilepsy-related injuries, academic struggles, and stigmatization at school were examined. Results indicate that all participants disclosed their children's epilepsy diagnoses to their children's teachers, and most (69%) reported that making this decision was "very easy." There were no statistically significant associations between disclosure and any of three parental perception variables (perceptions of the threats of injury, academic problems, and stigmatization at school). Limitations, implications, and directions for future research are discussed.
ContributorsBush, Vanessa (Author) / Wodrich, David L (Committee member) / Blanchard, Jay (Committee member) / Gorin, Joanna (Committee member) / Arizona State University (Publisher)
Created2011
150788-Thumbnail Image.png
Description
Interictal spikes, together with seizures, have been recognized as the two hallmarks of epilepsy, a brain disorder that 1% of the world's population suffers from. Even though the presence of spikes in brain's electromagnetic activity has diagnostic value, their dynamics are still elusive. It was an objective of this dissertation

Interictal spikes, together with seizures, have been recognized as the two hallmarks of epilepsy, a brain disorder that 1% of the world's population suffers from. Even though the presence of spikes in brain's electromagnetic activity has diagnostic value, their dynamics are still elusive. It was an objective of this dissertation to formulate a mathematical framework within which the dynamics of interictal spikes could be thoroughly investigated. A new epileptic spike detection algorithm was developed by employing data adaptive morphological filters. The performance of the spike detection algorithm was favorably compared with others in the literature. A novel spike spatial synchronization measure was developed and tested on coupled spiking neuron models. Application of this measure to individual epileptic spikes in EEG from patients with temporal lobe epilepsy revealed long-term trends of increase in synchronization between pairs of brain sites before seizures and desynchronization after seizures, in the same patient as well as across patients, thus supporting the hypothesis that seizures may occur to break (reset) the abnormal spike synchronization in the brain network. Furthermore, based on these results, a separate spatial analysis of spike rates was conducted that shed light onto conflicting results in the literature about variability of spike rate before and after seizure. The ability to automatically classify seizures into clinical and subclinical was a result of the above findings. A novel method for epileptogenic focus localization from interictal periods based on spike occurrences was also devised, combining concepts from graph theory, like eigenvector centrality, and the developed spike synchronization measure, and tested very favorably against the utilized gold rule in clinical practice for focus localization from seizures onset. Finally, in another application of resetting of brain dynamics at seizures, it was shown that it is possible to differentiate with a high accuracy between patients with epileptic seizures (ES) and patients with psychogenic nonepileptic seizures (PNES). The above studies of spike dynamics have elucidated many unknown aspects of ictogenesis and it is expected to significantly contribute to further understanding of the basic mechanisms that lead to seizures, the diagnosis and treatment of epilepsy.
ContributorsKrishnan, Balu (Author) / Iasemidis, Leonidas (Thesis advisor) / Tsakalis, Kostantinos (Committee member) / Spanias, Andreas (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
150108-Thumbnail Image.png
Description
In the late 1960s, Granger published a seminal study on causality in time series, using linear interdependencies and information transfer. Recent developments in the field of information theory have introduced new methods to investigate the transfer of information in dynamical systems. Using concepts from Chaos and Markov theory, much of

In the late 1960s, Granger published a seminal study on causality in time series, using linear interdependencies and information transfer. Recent developments in the field of information theory have introduced new methods to investigate the transfer of information in dynamical systems. Using concepts from Chaos and Markov theory, much of these methods have evolved to capture non-linear relations and information flow between coupled dynamical systems with applications to fields like biomedical signal processing. This thesis deals with the application of information theory to non-linear multivariate time series and develops measures of information flow to identify significant drivers and response (driven) components in networks of coupled sub-systems with variable coupling in strength and direction (uni- or bi-directional) for each connection. Transfer Entropy (TE) is used to quantify pairwise directional information. Four TE-based measures of information flow are proposed, namely TE Outflow (TEO), TE Inflow (TEI), TE Net flow (TEN), and Average TE flow (ATE). First, the reliability of the information flow measures on models, with and without noise, is evaluated. The driver and response sub-systems in these models are identified. Second, these measures are applied to electroencephalographic (EEG) data from two patients with focal epilepsy. The analysis showed dominant directions of information flow between brain sites and identified the epileptogenic focus as the system component typically with the highest value for the proposed measures (for example, ATE). Statistical tests between pre-seizure (preictal) and post-seizure (postictal) information flow also showed a breakage of the driving of the brain by the focus after seizure onset. The above findings shed light on the function of the epileptogenic focus and understanding of ictogenesis. It is expected that they will contribute to the diagnosis of epilepsy, for example by accurate identification of the epileptogenic focus from interictal periods, as well as the development of better seizure detection, prediction and control methods, for example by isolating pathologic areas of excessive information flow through electrical stimulation.
ContributorsPrasanna, Shashank (Author) / Jassemidis, Leonidas (Thesis advisor) / Tsakalis, Konstantinos (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2011
151058-Thumbnail Image.png
Description
Development of post-traumatic epilepsy (PTE) after traumatic brain injury (TBI) is a major health concern (5% - 50% of TBI cases). A significant problem in TBI management is the inability to predict which patients will develop PTE. Such prediction, followed by timely treatment, could be highly beneficial to TBI patients.

Development of post-traumatic epilepsy (PTE) after traumatic brain injury (TBI) is a major health concern (5% - 50% of TBI cases). A significant problem in TBI management is the inability to predict which patients will develop PTE. Such prediction, followed by timely treatment, could be highly beneficial to TBI patients. Six male Sprague-Dawley rats were subjected to a controlled cortical impact (CCI). A 6mm piston was pneumatically driven 3mm into the right parietal cortex with velocity of 5.5m/s. The rats were subsequently implanted with 6 intracranial electroencephalographic (EEG) electrodes. Long-term (14-week) continuous EEG recordings were conducted. Using linear (coherence) and non-linear (Lyapunov exponents) measures of EEG dynamics in conjunction with measures of network connectivity, we studied the evolution over time of the functional connectivity between brain sites in order to identify early precursors of development of epilepsy. Four of the six TBI rats developed PTE 6 to 10 weeks after the initial insult to the brain. Analysis of the continuous EEG from these rats showed a gradual increase of the connectivity between critical brain sites in terms of their EEG dynamics, starting at least 2 weeks prior to their first spontaneous seizure. In contrast, for the rats that did not develop epilepsy, connectivity levels did not change, or decreased during the whole course of the experiment across pairs of brain sites. Consistent behavior of functional connectivity changes between brain sites and the "focus" (site of impact) over time was demonstrated for coherence in three out of the four epileptic and in both non-epileptic rats, while for STLmax in all four epileptic and in both non-epileptic rats. This study provided us with the opportunity to quantitatively investigate several aspects of epileptogenesis following traumatic brain injury. Our results strongly support a network pathology that worsens with time. It is conceivable that the observed changes in spatiotemporal dynamics after an initial brain insult, and long before the development of epilepsy, could constitute a basis for predictors of epileptogenesis in TBI patients.
ContributorsTobin, Edward (Author) / Iasemidis, Leonidas (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2012
150924-Thumbnail Image.png
Description
Approximately 1% of the world population suffers from epilepsy. Continuous long-term electroencephalographic (EEG) monitoring is the gold-standard for recording epileptic seizures and assisting in the diagnosis and treatment of patients with epilepsy. However, this process still requires that seizures are visually detected and marked by experienced and trained electroencephalographers. The

Approximately 1% of the world population suffers from epilepsy. Continuous long-term electroencephalographic (EEG) monitoring is the gold-standard for recording epileptic seizures and assisting in the diagnosis and treatment of patients with epilepsy. However, this process still requires that seizures are visually detected and marked by experienced and trained electroencephalographers. The motivation for the development of an automated seizure detection algorithm in this research was to assist physicians in such a laborious, time consuming and expensive task. Seizures in the EEG vary in duration (seconds to minutes), morphology and severity (clinical to subclinical, occurrence rate) within the same patient and across patients. The task of seizure detection is also made difficult due to the presence of movement and other recording artifacts. An early approach towards the development of automated seizure detection algorithms utilizing both EEG changes and clinical manifestations resulted to a sensitivity of 70-80% and 1 false detection per hour. Approaches based on artificial neural networks have improved the detection performance at the cost of algorithm's training. Measures of nonlinear dynamics, such as Lyapunov exponents, have been applied successfully to seizure prediction. Within the framework of this MS research, a seizure detection algorithm based on measures of linear and nonlinear dynamics, i.e., the adaptive short-term maximum Lyapunov exponent (ASTLmax) and the adaptive Teager energy (ATE) was developed and tested. The algorithm was tested on long-term (0.5-11.7 days) continuous EEG recordings from five patients (3 with intracranial and 2 with scalp EEG) and a total of 56 seizures, producing a mean sensitivity of 93% and mean specificity of 0.048 false positives per hour. The developed seizure detection algorithm is data-adaptive, training-free and patient-independent. It is expected that this algorithm will assist physicians in reducing the time spent on detecting seizures, lead to faster and more accurate diagnosis, better evaluation of treatment, and possibly to better treatments if it is incorporated on-line and real-time with advanced neuromodulation therapies for epilepsy.
ContributorsVenkataraman, Vinay (Author) / Jassemidis, Leonidas (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2012
155064-Thumbnail Image.png
Description
From time immemorial, epilepsy has persisted to be one of the greatest impediments to human life for those stricken by it. As the fourth most common neurological disorder, epilepsy causes paroxysmal electrical discharges in the brain that manifest as seizures. Seizures have the effect of debilitating patients on a physical

From time immemorial, epilepsy has persisted to be one of the greatest impediments to human life for those stricken by it. As the fourth most common neurological disorder, epilepsy causes paroxysmal electrical discharges in the brain that manifest as seizures. Seizures have the effect of debilitating patients on a physical and psychological level. Although not lethal by themselves, they can bring about total disruption in consciousness which can, in hazardous conditions, lead to fatality. Roughly 1\% of the world population suffer from epilepsy and another 30 to 50 new cases per 100,000 increase the number of affected annually. Controlling seizures in epileptic patients has therefore become a great medical and, in recent years, engineering challenge.



In this study, the conditions of human seizures are recreated in an animal model of temporal lobe epilepsy. The rodents used in this study are chemically induced to become chronically epileptic. Their Electroencephalogram (EEG) data is then recorded and analyzed to detect and predict seizures; with the ultimate goal being the control and complete suppression of seizures.



Two methods, the maximum Lyapunov exponent and the Generalized Partial Directed Coherence (GPDC), are applied on EEG data to extract meaningful information. Their effectiveness have been reported in the literature for the purpose of prediction of seizures and seizure focus localization. This study integrates these measures, through some modifications, to robustly detect seizures and separately find precursors to them and in consequence provide stimulation to the epileptic brain of rats in order to suppress seizures. Additionally open-loop stimulation with biphasic currents of various pairs of sites in differing lengths of time have helped us create control efficacy maps. While GPDC tells us about the possible location of the focus, control efficacy maps tells us how effective stimulating a certain pair of sites will be.



The results from computations performed on the data are presented and the feasibility of the control problem is discussed. The results show a new reliable means of seizure detection even in the presence of artifacts in the data. The seizure precursors provide a means of prediction, in the order of tens of minutes, prior to seizures. Closed loop stimulation experiments based on these precursors and control efficacy maps on the epileptic animals show a maximum reduction of seizure frequency by 24.26\% in one animal and reduction of length of seizures by 51.77\% in another. Thus, through this study it was shown that the implementation of the methods can ameliorate seizures in an epileptic patient. It is expected that the new knowledge and experimental techniques will provide a guide for future research in an effort to ultimately eliminate seizures in epileptic patients.
ContributorsShafique, Md Ashfaque Bin (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Muthuswamy, Jitendran (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2016
155603-Thumbnail Image.png
Description
Alexithymia is a personality trait characterized by a diminished ability to identify and describe feelings, as well as an inability to distinguish physical symptoms associated with emotional arousal. Alexithymia is elevated in both patients with epilepsy (a neurologically-based seizure disorder) and psychogenic nonepileptic seizures (PNES; a psychological condition mimicking epilepsy);

Alexithymia is a personality trait characterized by a diminished ability to identify and describe feelings, as well as an inability to distinguish physical symptoms associated with emotional arousal. Alexithymia is elevated in both patients with epilepsy (a neurologically-based seizure disorder) and psychogenic nonepileptic seizures (PNES; a psychological condition mimicking epilepsy); however, different neuropsychological processes may underlie this deficit in the two groups. To expand on previous research considering factors contributing to alexithymia in these populations, we examined the extent to which scores on the Toronto Alexithymia Scale (TAS-20) were predicted by performance on measures of executive and language functioning. We studied 138 PNES and 150 epilepsy patients with video-EEG confirmed diagnoses. Neuropsychological tests were administered to assess executive functioning (interference scores of the Stroop Color-Word Test and Part B of the Trail Making Test) and language functioning (Animals, Controlled Oral Word Association Test, and Boston Naming Test). Hierarchical linear regressions revealed that the relationships between disparate neuropsychological domains and alexithymia were not moderated by diagnosis of PNES or epilepsy. Multiple regression analyses within each group demonstrated that phonemic verbal fluency and response inhibition were significant predictors of alexithymia in epilepsy. Thus, alexithymia may reflect impairments in language and aspects of executive functioning in both PNES and epilepsy.
ContributorsReynolds, Christopher Martin (Author) / Roberts, Nicole A. (Thesis advisor) / Burleson, Mary H (Committee member) / Nanez, Jose (Committee member) / Arizona State University (Publisher)
Created2017
149692-Thumbnail Image.png
Description
Epilepsy is a chronic illness impacting the lives of over 300,000 children nationally. Sexson and Madan-Swain offer a theory that addresses successful school reentry in children that are chronically ill. Their theory posits that successful school reentry is influenced by school personnel with appropriate attitudes, training experiences, and by factors

Epilepsy is a chronic illness impacting the lives of over 300,000 children nationally. Sexson and Madan-Swain offer a theory that addresses successful school reentry in children that are chronically ill. Their theory posits that successful school reentry is influenced by school personnel with appropriate attitudes, training experiences, and by factors relating to the child's illness. The parents of 74 students, between second and twelfth grades, completed a questionnaire addressing their child's epilepsy and their current level of seizure control. Each child's homeroom teacher also completed a survey regarding their training experiences about epilepsy and their attitudes towards individuals with epilepsy. Additional information was gathered from the child's school regarding attendance rates, most recent Terra Nova test scores (a group achievement test), and special education enrollment status. Data were analyzed via four multiple regression analyses and one logistic regression analysis. It was found that seizure control was a significant predictor for attendance, academic achievement (i.e., mathematics, writing, and reading), and special education enrollment. Additionally, teachers' attitudes towards epilepsy were a significant predictor of academic achievement (writing and reading) and special education enrollment. Teacher training experience was not a significant predictor in any of the analyses.
ContributorsBohac, Genevieve (Author) / Wodrich, David L (Thesis advisor) / Lavoie, Michael (Committee member) / Thompson, Marilyn (Committee member) / Arizona State University (Publisher)
Created2011