Matching Items (8)
Filtering by

Clear all filters

135780-Thumbnail Image.png
Description
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown.

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown. Current DMD research uses mdx mice as a model, and while very useful, does not allow the study of cell-autonomous transcriptome changes during the progression of DMD due to the strong inflammatory response, perhaps hiding important therapeutic targets. C. elegans, which has a very weak inflammatory response compared to mdx mice and humans, has been used in the past to study DMD with some success. The worm ortholog of the dystrophin gene has been identified as dys-1 since its mutation phenocopies the progression of the disease and a portion of the human dystrophin gene alleviates symptoms. Importantly, the extracted RNA transcriptome from dys-1 worms showed significant change in gene expression, which needs to be further investigated with the development of a more robust model. Our lab previously published a method to isolate high-quality muscle-specific RNA from worms, which could be used to study such changes at higher resolution. We crossed the dys-1 worms with our muscle-specific strain and demonstrated that the chimeric strain exhibits similar behavioral symptoms as DMD patients as characterized by a shortened lifespan, difficulty in movement, and a decrease in speed. The presence of dys-1 and other members of the dystrophin complex in the body muscle were supported by the development of a resulting phenotype due to RNAi knockdown of each component in the body muscle; however, further experimentation is needed to reinforce this conclusion. Thus, the constructed chimeric C. elegans strain possesses unique characteristics that will allow the study of genetic changes, such as transcriptome rearrangements and dysregulation of miRNA, and how they affect the progression of DMD.
ContributorsNguyen, Thuy-Duyen Cao (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Duchaine, Thomas (Committee member) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137344-Thumbnail Image.png
Description
miRNAs are short non-coding regulatory RNAs that have an important roles in a wide range of biological processes. Dysfunction of miRNA regulation has also been shown to occur in diseases such as cancer. Despite the widespread influence of miRNAs in these contexts, the vast majority of miRNA targets are poorly

miRNAs are short non-coding regulatory RNAs that have an important roles in a wide range of biological processes. Dysfunction of miRNA regulation has also been shown to occur in diseases such as cancer. Despite the widespread influence of miRNAs in these contexts, the vast majority of miRNA targets are poorly characterized. The aim of this research project was to gain a better understating of miRNA targeting by using the model organism C. elegans. In order to do this I adapted a novel high-throughput assay to detect miRNA targets for use with the C. elegans 3`UTRome. As a proof of principle I performed this assay on 96 C. elegans 3`UTRs using high-throughput techniques. The results revealed miRNA interactions with two predicted 3`UTR targets for the miRNA lin-4 and ten unpredicted targets. The results also corroborated previous findings that certain worm miRNAs require special modifications to be expressed in human cells.
ContributorsKotagama, Kasuen Indrajith Bandara (Author) / Mangone, Marco (Thesis director) / Anderson, Karen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-12
Description
In eukaryotes, most messenger RNA precursors (pre-mRNA) undergo extensive processing, leading to the cleavage of the transcript followed by the addition of a poly(A) tail. This process is executed by a large complex known as the Cleavage and Polyadenylation Complex (CPC). Its central subcomplex, the Cleavage and Polyadenylation Specificity Factor

In eukaryotes, most messenger RNA precursors (pre-mRNA) undergo extensive processing, leading to the cleavage of the transcript followed by the addition of a poly(A) tail. This process is executed by a large complex known as the Cleavage and Polyadenylation Complex (CPC). Its central subcomplex, the Cleavage and Polyadenylation Specificity Factor (CPSF) complex is responsible for recognizing a short hexameric element AAUAAA located at the 3’end in the nascent mRNA molecule and catalyzing the pre-mRNA cleavage. In the round nematode C. elegans, the cleavage reaction is executed by a subunit of this complex named CPSF3, a highly conserved RNA endonuclease. While the crystal structure of its human ortholog CPSF73 has been recently identified, we still do not understand the molecular mechanisms and sequence specificity used by this protein to induce cleavage, which in turn would help to understand how this process is executed in detail. Additionally, we do not understand in additional factors are needed for this process. In order to address these issues, we performed a comparative analysis of the CPSF3 protein in higher eukaryotes to identify conserved functional domains. The overall percent identities for members of the CPSF complex range from 33.68% to 56.49%, suggesting that the human and C. elegans orthologs retain a high level of conservation. CPSF73 is the protein with the overall highest percent identity of the CPSF complex, with its active site-containing domain possessing 74.60% identity with CPSF3. Additionally, we gathered and expressed using a bacterial expression system CPSF3 and a mutant, which is unable to perform the cleavage reaction, and developed an in vitro cleavage assay to test whether CPSF3 activity is necessary and sufficient to induce nascent mRNA cleavage. This project establishes tools to better understand how CPSF3 functions within the CPC and sheds light on the biology surrounding the transcription process as a whole.
ContributorsGallante, Christina (Author) / Mangone, Marco (Thesis director) / Sharma, Shalini (Committee member) / Hrach, Heather (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133015-Thumbnail Image.png
Description
Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on

Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on the 3’UTR and execute the cleavage reaction. Interactions of the complex with the RNA and specific dynamics of complex recruitment and formation still remain largely uncharacterized. In our lab we have identified an Adenosine residue as the nucleotide most often present at the cleavage site, although it is unclear whether this specific element is a required instructor of cleavage and polyadenylation. To address whether the Adenosine residue is necessary and sufficient for the cleavage and polyadenylation reaction, we mutated this nucleotide at the cleavage site in three C. elegans protein coding genes, forcing the expression of these wt and mutant 3’UTRs, and studied how the cleavage and polyadenylation machinery process these genes in vivo. We found that interrupting the wt sequence elements found at the cleavage site interferes with the cleavage and polyadenylation reaction, suggesting that the sequence close to the end of the transcript plays a role in modulating the site of the RNA cleavage. This activity is also gene-specific. Genes such as ges-1 showed little disruption in the cleavage of the transcript, with similar location occurring in both the wt and mutant 3’UTRs. On the other hand, mutation of the cleavage site in genes such as Y106G6H.9 caused the activation of new cryptic cleavage sites within the transcript. Taken together, my experiments suggest that the sequence elements at the cleavage site somehow participate in the reaction to guide the cleavage reaction to occur at an exact site. This work will help to better understand the mechanisms of transcription termination in vivo and will push forward research aimed to study post-transcriptional gene regulation in eukaryotes.
ContributorsSteber, Hannah Suzanne (Author) / Mangone, Marco (Thesis director) / Harris, Robin (Committee member) / LaBaer, Joshua (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

Bdellovibrio bacteriovorus (B. bacteriovorus) is a predatory bacterium that preys on other gram-negative bacteria. In order to survive and reproduce, B. bacteriovorus invades the periplasm of other bacterial cells creating the potential for it to act as a “living antibiotic”. In this work, a comparison was made between the rates

Bdellovibrio bacteriovorus (B. bacteriovorus) is a predatory bacterium that preys on other gram-negative bacteria. In order to survive and reproduce, B. bacteriovorus invades the periplasm of other bacterial cells creating the potential for it to act as a “living antibiotic”. In this work, a comparison was made between the rates of predation of B. bacteriovorus in vitro and in vivo. In vitro, the behavior of B. bacteriovorus was examined in the presence of prey. In vivo, the behavior of B. bacteriovorus was examined in the presence of prey and a living host, Caenorhabditis elegans (C. elegans). C. elegans were infected with Escherichia coli (E. coli) and treated with B. bacteriovorus. In previous studies that analyzed B. bacteriovorus in vitro, a decrease in concentrations of bacteria has been observed after introduction of B. bacteriovorus. In vivo, B. bacteriovorus were found to not have a net reduction of E. coli but to reproducibly raise the level of fluctuations in E. coli concentrations.

ContributorsPerry, Nicole (Author) / Presse, Steve (Thesis director) / Mangone, Marco (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
187431-Thumbnail Image.png
Description
MicroRNAs (miRNAs) are 17-22 nucleotide non-coding RNAs that regulate gene expression by targeting non-complementary elements in the 3’ untranslated regions (3’UTRs) of mRNAs. miRNAs, which form complex networks of interaction that differ by tissue and developmental stage, display conservation in their function across metazoan species. Yet much remains unknown regarding

MicroRNAs (miRNAs) are 17-22 nucleotide non-coding RNAs that regulate gene expression by targeting non-complementary elements in the 3’ untranslated regions (3’UTRs) of mRNAs. miRNAs, which form complex networks of interaction that differ by tissue and developmental stage, display conservation in their function across metazoan species. Yet much remains unknown regarding their biogenesis, localization, strand selection, and their absolute abundance due to the difficulty of detecting and amplifying such small molecules. Here, I used an updated HT qPCR-based methodology to follow miRNA expression of 5p and 3p strands for all 190 C. elegans miRNAs described in miRBase throughout all six developmental stages in triplicates (total of 9,708 experiments), and studied their expression levels, tissue localization, and the rules underlying miRNA strand selection. My study validated previous findings and identified novel, conserved patterns of miRNA strand expression throughout C. elegans development, which at times correlate with previously observed developmental phenotypes. Additionally, my results highlighted novel structural principles underlying strand selection, which can be applied to higher metazoans. Though optimized for use in C. elegans, this method can be easily adapted to other eukaryotic systems, allowing for more scalable quantitative investigation of miRNA biology and/or miRNA diagnostics.
ContributorsMeadows, Dalton Alexander (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Joshua (Committee member) / Murugan, Vel (Committee member) / Wilson-Rawls, Jeanne (Committee member) / Arizona State University (Publisher)
Created2023
Description

Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is

Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is a hallmark of various human diseases. Previous data have shown that the majority of 3’UTRs of mRNAs from the nematode Caenorhabditis elegans terminate at an adenosine nucleotide, and that mutating this adenosine disrupts the cleavage reaction. It is unclear if the adenosine is included in the mature mRNA transcript or if it is cleaved off. To address this question, we are developing a novel method called the Terminal Adenosine Methylation (TAM) assay which will allow us to precisely define whether the cleavage reaction takes place upstream or downstream of this terminal adenosine. The TAM Assay utilizes the ability of the methyltransferase domain (MTD) of the human methyltransferase METTL16 to methylate the terminal adenosine of a test mRNA transcript prior to the cleavage reaction in vivo. The presence or absence of methylation at the terminal adenosine will then be identified using direct RNA sequencing. This project focuses on 1) preparing the chimeric construct that positions the MTD on the mRNA cleavage site of a test mRNA transcript, and 2) testing the functionality of this construct in vitro and developing a transgenic C. elegans strain expressing it. The TAM assay has the potential to be a valuable tool for elucidating the role of the terminal adenosine in cleavage and polyadenylation.

ContributorsKeane, Sara (Author) / Mangone, Marco (Thesis director) / Lapinaite, Audrone (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2023-05
157059-Thumbnail Image.png
Description
Multicellular organisms use precise gene regulation, executed throughout development, to build and sustain various cell and tissue types. Post-transcriptional gene regulation is essential for metazoan development and acts on mRNA to determine its localization, stability, and translation. MicroRNAs (miRNAs) and RNA binding proteins (RBPs) are the principal effectors of post-transcriptional

Multicellular organisms use precise gene regulation, executed throughout development, to build and sustain various cell and tissue types. Post-transcriptional gene regulation is essential for metazoan development and acts on mRNA to determine its localization, stability, and translation. MicroRNAs (miRNAs) and RNA binding proteins (RBPs) are the principal effectors of post-transcriptional gene regulation and act by targeting the 3'untranslated regions (3'UTRs) of mRNA. MiRNAs are small non-coding RNAs that have the potential to regulate hundreds to thousands of genes and are dysregulated in many prevalent human diseases such as diabetes, Alzheimer's disease, Duchenne muscular dystrophy, and cancer. However, the precise contribution of miRNAs to the pathology of these diseases is not known.

MiRNA-based gene regulation occurs in a tissue-specific manner and is implemented by an interplay of poorly understood and complex mechanisms, which control both the presence of the miRNAs and their targets. As a consequence, the precise contributions of miRNAs to gene regulation are not well known. The research presented in this thesis systematically explores the targets and effects of miRNA-based gene regulation in cell lines and tissues.

I hypothesize that miRNAs have distinct tissue-specific roles that contribute to the gene expression differences seen across tissues. To address this hypothesis and expand our understanding of miRNA-based gene regulation, 1) I developed the human 3'UTRome v1, a resource for studying post-transcriptional gene regulation. Using this resource, I explored the targets of two cancer-associated miRNAs miR-221 and let-7c. I identified novel targets of both these miRNAs, which present potential mechanisms by which they contribute to cancer. 2) Identified in vivo, tissue-specific targets in the intestine and body muscle of the model organism Caenorhabditis elegans. The results from this study revealed that miRNAs regulate tissue homeostasis, and that alternative polyadenylation and miRNA expression patterns modulate miRNA targeting at the tissue-specific level. 3) Explored the functional relevance of miRNA targeting to tissue-specific gene expression, where I found that miRNAs contribute to the biogenesis of mRNAs, through alternative splicing, by regulating tissue-specific expression of splicing factors. These results expand our understanding of the mechanisms that guide miRNA targeting and its effects on tissue-specific gene expression.
ContributorsKotagama, Kasuen Indrajith Bandara (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Joshua (Committee member) / Newbern, Jason (Committee member) / Rawls, Alan (Committee member) / Arizona State University (Publisher)
Created2019