Matching Items (410)
Filtering by

Clear all filters

153112-Thumbnail Image.png
Description
Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters

Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters less than 100 nm in any external dimension. Examples of their use include titanium dioxide added as a pigment in products intended to be ingested by humans, silicon dioxide NPs are used in foods as an anticaking agent, and gold or iron oxide NPs can be used as vectors for drug delivery or contrast agents for specialized medical imaging. Although the intended use of these NPs is often to improve human health, it has come to the attention of investigators that NPs can have unintended or even detrimental effects on the organism. This work describes one such unintended effect of NP exposure from the perspective of exposure via the oral route. First, this Dissertation will explain an event referred to as brush border disruption that occurred after nanoparticles interacted with an in vitro model of the human intestinal epithelium. Second, this Dissertation will identify and characterize several consumer goods that were shown to contain titanium dioxide that are intended to be ingested. Third, this Dissertation shows that sedimentation due to gravity does not artifactually result in disruption of brush borders as a consequence of exposure to food grade titanium dioxide in vitro. Finally, this Dissertation will demonstrate that iron oxide nanoparticles elicited similar effects after exposure to an in vitro brush border expressing model of the human placenta. Together, these data suggest that brush border disruption is not an artifact of the material/cell culture model, but instead represents a bona fide biological response as a result of exposure to nanomaterial.
ContributorsFaust, James J (Author) / Capco, David G. (Thesis advisor) / Ugarova, Tatiana (Committee member) / Chandler, Douglas (Committee member) / Baluch, Page (Committee member) / Herman, Richard (Committee member) / Arizona State University (Publisher)
Created2014
136282-Thumbnail Image.png
Description
Depletion of fossil fuel resources has led to the investigation of alternate feedstocks for and methods of chemical synthesis, in particular the use of E. coli biocatalysts to produce fine commodity chemicals from renewable glucose sources. Production of phenol, 2-phenylethanol, and styrene was investigated, in particular the limitation in yield

Depletion of fossil fuel resources has led to the investigation of alternate feedstocks for and methods of chemical synthesis, in particular the use of E. coli biocatalysts to produce fine commodity chemicals from renewable glucose sources. Production of phenol, 2-phenylethanol, and styrene was investigated, in particular the limitation in yield and accumulation that results from high product toxicity. This paper examines two methods of product toxicity mitigation: the use of efflux pumps and the separation of pathways which produce less toxic intermediates. A library of 43 efflux pumps from various organisms were screened for their potential to confer resistance to phenol, 2-phenylethanol, and styrene on an E. coli host. A pump sourced from P. putida was found to allow for increased host growth in the presence of styrene as compared to a cell with no efflux pump. The separation of styrene producing pathway was also investigated. Cells capable of performing the first and latter halves of the synthesis were allowed to grow separately and later combined in order to capitalize on the relatively lower toxicity of the intermediate, trans-cinnamate. The styrene production and yield from this separated set of cultures was compared to that resulting from the growth of cells containing the full set of styrene synthesis genes. Results from this experiment were inconclusive.
ContributorsLallmamode, Noor Atiya Jabeen (Author) / Nielsen, David (Thesis director) / Cadillo-Quiroz, Hinsby (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136304-Thumbnail Image.png
Description
A meta-analysis was conducted to compare the total amount of ionic liquid (IL) literature (n = 39,036) to the body of publications dealing with IL toxicity (n = 213), with the goal of establishing the state of knowledge and existing information gaps. Publications on IL toxicity were collected from the

A meta-analysis was conducted to compare the total amount of ionic liquid (IL) literature (n = 39,036) to the body of publications dealing with IL toxicity (n = 213), with the goal of establishing the state of knowledge and existing information gaps. Publications on IL toxicity were collected from the SciFinder database and sorted by cation and model organism studied. Studies focusing on pharmacokinetics and drug development were excluded, as were structure-activity relationship methods of data collection. Total publishing activity was used as a measure to gauge research and industrial usage of ILs as well as the knowledge base of toxicology. Five of the most commonly studied IL cations were identified and used to establish a relationship between toxicity data and potential of commercial use: imidazolium, ammonium, phosphonium, pyridinium, and pyrrolidinium. Toxicology publications for all IL cations represented 1.2% ± 0.62% of the total publishing activity; compared with other industrial chemicals, these numbers indicate that there is still a paucity of studies on the adverse effects of this class of chemicals. In vitro models and marine bacteria were the most frequently studied biological systems, contributing 18% and 15%, respectively, to the total body of IL toxicity studies. Whole animal studies (n = 87) comprised 41% of IL toxicity studies, with a subset of in vivo mammalian models consisting of 8%. Human toxicology data were found to be limited to in vitro analyses, indicating substantial knowledge gaps. Risks from long-term and chronic low-level exposure to ILs have not been established yet for any model organisms, reemphasizing the need for filling crucial knowledge gaps concerning human health effects and the environmental safety of ILs. Adding to the existing knowledge of the molecular toxicity characteristics of ILs can help inform the design of greener, less toxic and more benign IL technologies.
ContributorsHeckenbach, Mary (Co-author) / Halden, Rolf (Co-author, Thesis director) / Jehn, Megan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
ContributorsEvans, Bartlett R. (Conductor) / Schildkret, David (Conductor) / Glenn, Erica (Conductor) / Concert Choir (Performer) / Chamber Singers (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-16
155828-Thumbnail Image.png
Description
Solar photovoltaic (PV) deployment has grown at unprecedented rates since the early 2000s. As the global PV market increases, so will the volume of decommissioned PV panels. Growing PV panel waste presents a new environmental challenge, but also unprecedented opportunities to create value and pursue new economic avenues. Currently, in

Solar photovoltaic (PV) deployment has grown at unprecedented rates since the early 2000s. As the global PV market increases, so will the volume of decommissioned PV panels. Growing PV panel waste presents a new environmental challenge, but also unprecedented opportunities to create value and pursue new economic avenues. Currently, in the United States, there are no regulations for governing the recycling of solar panels and the recycling process varies by the manufacturer. To bring in PV specific recycling regulations, whether the PV panels are toxic to the landfills, is to be determined. Per existing EPA regulations, PV panels are categorized as general waste and are subjected to a toxicity characterization leaching procedure (TCLP) to determine if it contains any toxic metals that can possibly leach into the landfill. In this thesis, a standardized procedure is developed for extracting samples from an end of life PV module. A literature review of the existing regulations in Europe and other countries is done. The sample extraction procedure is tested on a crystalline Si module to validate the method. The extracted samples are sent to an independent TCLP testing lab and the results are obtained. Image processing technique developed at ASU PRL is used to detect the particle size in a broken module and the size of samples sent is confirmed to follow the regulation.
ContributorsKrishnamurthy, Raghav (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Kuitche, Joseph (Committee member) / Arizona State University (Publisher)
Created2017
148201-Thumbnail Image.png
Description

Fluoroquinolone antibiotics have been known to cause severe, multisystem adverse side effects, termed fluoroquinolone toxicity (FQT). This toxicity syndrome can present with adverse effects that vary from individual to individual, including effects on the musculoskeletal and nervous systems, among others. The mechanism behind FQT in mammals is not known, although

Fluoroquinolone antibiotics have been known to cause severe, multisystem adverse side effects, termed fluoroquinolone toxicity (FQT). This toxicity syndrome can present with adverse effects that vary from individual to individual, including effects on the musculoskeletal and nervous systems, among others. The mechanism behind FQT in mammals is not known, although various possibilities have been investigated. Among the hypothesized FQT mechanisms, those that could potentially explain multisystem toxicity include off-target mammalian topoisomerase interactions, increased production of reactive oxygen species, oxidative stress, and oxidative damage, as well as metal chelating properties of FQs. This review presents relevant information on fluoroquinolone antibiotics and FQT and explores the mechanisms that have been proposed. A fluoroquinolone-induced increase in reactive oxygen species and subsequent oxidative stress and damage presents the strongest evidence to explain this multisystem toxicity syndrome. Understanding the mechanism of FQT in mammals is important to aid in the prevention and treatment of this condition.

ContributorsHall, Brooke Ashlyn (Author) / Redding, Kevin (Thesis director) / Wideman, Jeremy (Committee member) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
ContributorsOwen, Ken (Conductor) / McDevitt, Mandy L. M. (Performer) / Larson, Brook (Conductor) / Wang, Lin-Yu (Performer) / Jacobs, Todd (Performer) / Morehouse, Daniel (Performer) / Magers, Kristen (Performer) / DeGrow, Gary (Performer) / DeGrow, Richard (Performer) / Women's Chorus (Performer) / Sun Devil Singers (Performer) / ASU Library. Music Library (Publisher)
Created2004-03-24
ContributorsMetz, John (Performer) / Sowers, Richard (Performer) / Collegium Musicum (Performer) / ASU Library. Music Library (Publisher)
Created1983-01-29
ContributorsEvans, Bartlett R. (Conductor) / Glenn, Erica (Conductor) / Steiner, Kieran (Conductor) / Thompson, Jason D. (Conductor) / Arizona Statesmen (Performer) / Women's Chorus (Performer) / Concert Choir (Performer) / Gospel Choir (Conductor) / ASU Library. Music Library (Publisher)
Created2019-03-15
ContributorsKillian, George W. (Performer) / Killian, Joni (Performer) / Vocal Jazz Ensemble (Performer) / ASU Library. Music Library (Publisher)
Created1992-11-05