Matching Items (3)
Filtering by

Clear all filters

Description
Every year, more than 11 million maritime containers and 11 million commercial trucks arrive to the United States, carrying all types of imported goods. As it would be costly to inspect every container, only a fraction of them are inspected before being allowed to proceed into the United States. This

Every year, more than 11 million maritime containers and 11 million commercial trucks arrive to the United States, carrying all types of imported goods. As it would be costly to inspect every container, only a fraction of them are inspected before being allowed to proceed into the United States. This dissertation proposes a decision support system that aims to allocate the scarce inspection resources at a land POE (L-POE), to minimize the different costs associated with the inspection process, including those associated with delaying the entry of legitimate imports. Given the ubiquity of sensors in all aspects of the supply chain, it is necessary to have automated decision systems that incorporate the information provided by these sensors and other possible channels into the inspection planning process. The inspection planning system proposed in this dissertation decomposes the inspection effort allocation process into two phases: Primary and detailed inspection planning. The former helps decide what to inspect, and the latter how to conduct the inspections. A multi-objective optimization (MOO) model is developed for primary inspection planning. This model tries to balance the costs of conducting inspections, direct and expected, and the waiting time of the trucks. The resulting model is exploited in two different ways: One is to construct a complete or a partial efficient frontier for the MOO model with diversity of Pareto-optimal solutions maximized; the other is to evaluate a given inspection plan and provide possible suggestions for improvement. The methodologies are described in detail and case studies provided. The case studies show that this MOO based primary planning model can effectively pick out the non-conforming trucks to inspect, while balancing the costs and waiting time.
ContributorsXue, Liangjie (Author) / Villalobos, Jesus René (Thesis advisor) / Gel, Esma (Committee member) / Runger, George C. (Committee member) / Maltz, Arnold (Committee member) / Arizona State University (Publisher)
Created2012
136490-Thumbnail Image.png
Description
The crew planning problem in the airline industry presents a very computationally complex problem of high importance to the business. Airlines must schedule crew members to ensure that all flights are staffed while remaining in compliance with the business needs and regulatory requirements set by entities such as unions and

The crew planning problem in the airline industry presents a very computationally complex problem of high importance to the business. Airlines must schedule crew members to ensure that all flights are staffed while remaining in compliance with the business needs and regulatory requirements set by entities such as unions and FAA. With the magnitude of operation of the prominent players in the airline industry today, the crew staffing problem proves very large and has become heavily reliant on operations research solution methodologies. An area of opportunity that has not yet been extensively researched lies in the planning of crew vacation. This paper develops a model driven by the idea of system risk that constructs an optimal vacation grid for the time period of one year. The model generates a daily allocation that maximizes vacation offering while ensuring a given level of system reliability. The model is then implemented using data from US Airways and model improvements are provided for practical application in the airline industry based on the output.
ContributorsFisher, Tignes Noel (Author) / Gel, Esma (Thesis director) / Jacobs, Tim (Committee member) / Clough, Michael (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
157571-Thumbnail Image.png
Description
Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development.

Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development. This thesis attempts to create a chance-constrained knapsack optimization model, which the breeder can use to make better decisions about seed progression and help reduce the levels of risk in their selections. The model’s objective is to select seed varieties out of a larger pool of varieties and maximize the average yield of the “knapsack” based on meeting some risk criteria. Two models are created for different cases. First is the risk reduction model which seeks to reduce the risk of getting a bad yield but still maximize the total yield. The second model considers the possibility of adverse environmental effects and seeks to mitigate the negative effects it could have on the total yield. In practice, breeders can use these models to better quantify uncertainty in selecting seed varieties
ContributorsOzcan, Ozkan Meric (Author) / Armbruster, Dieter (Thesis advisor) / Gel, Esma (Thesis advisor) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2019