Matching Items (5)
Filtering by

Clear all filters

152033-Thumbnail Image.png
Description
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
ContributorsHaghnevis, Moeed (Author) / Askin, Ronald G. (Thesis advisor) / Armbruster, Dieter (Thesis advisor) / Mirchandani, Pitu (Committee member) / Wu, Tong (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
Description
This paper explores the ability to predict yields of soybeans based on genetics and environmental factors. Based on the biology of soybeans, it has been shown that yields are best when soybeans grow within a certain temperature range. The event a soybean is exposed to temperature outside their accepted range

This paper explores the ability to predict yields of soybeans based on genetics and environmental factors. Based on the biology of soybeans, it has been shown that yields are best when soybeans grow within a certain temperature range. The event a soybean is exposed to temperature outside their accepted range is labeled as an instance of stress. Currently, there are few models that use genetic information to predict how crops may respond to stress. Using data provided by an agricultural business, a model was developed that can categorically label soybean varieties by their yield response to stress using genetic data. The model clusters varieties based on their yield production in response to stress. The clustering criteria is based on variance distribution and correlation. A logistic regression is then fitted to identify significant gene markers in varieties with minimal yield variance. Such characteristics provide a probabilistic outlook of how certain varieties will perform when planted in different regions. Given changing global climate conditions, this model demonstrates the potential of using data to efficiently develop and grow crops adjusted to climate changes.
ContributorsDean, Arlen (Co-author) / Ozcan, Ozkan (Co-author) / Travis, Daniel (Co-author) / Gel, Esma (Thesis director) / Armbruster, Dieter (Committee member) / Parry, Sam (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
148300-Thumbnail Image.png
Description

During the global COVID-19 pandemic in 2020, many universities shifted their focus to hosting classes and events online for their student population in order to keep them engaged. The present study investigated whether an association exists between student engagement (an individual’s engagement with class and campus) and resilience. A single-shot

During the global COVID-19 pandemic in 2020, many universities shifted their focus to hosting classes and events online for their student population in order to keep them engaged. The present study investigated whether an association exists between student engagement (an individual’s engagement with class and campus) and resilience. A single-shot survey was administered to 200 participants currently enrolled as undergraduate students at Arizona State University. A multiple regression analysis and Pearson correlations were calculated. A moderate, significant correlation was found between student engagement (total score) and resilience. A significant correlation was found between cognitive engagement (student’s approach and understanding of his learning) and resilience and between valuing and resilience. Contrary to expectations, participation was not associated with resilience. Potential explanations for these results were explored and practical applications for the university were discussed.

ContributorsEmmanuelli, Michelle (Author) / Jimenez Arista, Laura (Thesis director) / Sever, Amy (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147645-Thumbnail Image.png
Description

We attempted to apply a novel approach to stock market predictions. The Logistic Regression machine learning algorithm (Joseph Berkson) was applied to analyze news article headlines as represented by a bag-of-words (tri-gram and single-gram) representation in an attempt to predict the trends of stock prices based on the Dow Jones

We attempted to apply a novel approach to stock market predictions. The Logistic Regression machine learning algorithm (Joseph Berkson) was applied to analyze news article headlines as represented by a bag-of-words (tri-gram and single-gram) representation in an attempt to predict the trends of stock prices based on the Dow Jones Industrial Average. The results showed that a tri-gram bag led to a 49% trend accuracy, a 1% increase when compared to the single-gram representation’s accuracy of 48%.

ContributorsBarolli, Adeiron (Author) / Jimenez Arista, Laura (Thesis director) / Wilson, Jeffrey (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
157571-Thumbnail Image.png
Description
Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development.

Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development. This thesis attempts to create a chance-constrained knapsack optimization model, which the breeder can use to make better decisions about seed progression and help reduce the levels of risk in their selections. The model’s objective is to select seed varieties out of a larger pool of varieties and maximize the average yield of the “knapsack” based on meeting some risk criteria. Two models are created for different cases. First is the risk reduction model which seeks to reduce the risk of getting a bad yield but still maximize the total yield. The second model considers the possibility of adverse environmental effects and seeks to mitigate the negative effects it could have on the total yield. In practice, breeders can use these models to better quantify uncertainty in selecting seed varieties
ContributorsOzcan, Ozkan Meric (Author) / Armbruster, Dieter (Thesis advisor) / Gel, Esma (Thesis advisor) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2019