Matching Items (4)
Filtering by

Clear all filters

151302-Thumbnail Image.png
Description
Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can

Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can have beneficial effects on cognition in normal aging and AD, but increasing evidence suggests that the most commonly used HT formulation is not ideal. Work in this dissertation used the surgically menopausal rat to evaluate the cognitive effects and mechanisms of progestogens proscribed to women. I also translated these questions to the clinic, evaluating whether history of HT use impacts hippocampal and entorhinal cortex volumes assessed via imaging, and cognition, in menopausal women. Further, this dissertation investigates how sex impacts responsiveness to dietary interventions in a mouse model of AD. Results indicate that the most commonly used progestogen component of HT, medroxyprogesterone acetate (MPA), impairs cognition in the middle-aged and aged surgically menopausal rat. Further, MPA is the sole hormone component of the contraceptive Depo Provera, and my research indicates that MPA administered to young-adult rats leads to long lasting cognitive impairments, evident at middle age. Natural progesterone has been gaining increasing popularity as an alternate option to MPA for HT; however, my findings suggest that progesterone also impairs cognition in the middle-aged and aged surgically menopausal rat, and that the mechanism may be through increased GABAergic activation. This dissertation identified two less commonly used progestogens, norethindrone acetate and levonorgestrel, as potential HTs that could improve cognition in the surgically menopausal rat. Parameters guiding divergent effects on cognition were discovered. In women, prior HT use was associated with larger hippocampal and entorhinal cortex volumes, as well as a modest verbal memory enhancement. Finally, in a model of AD, sex impacts responsiveness to a dietary cognitive intervention, with benefits seen in male, but not female, transgenic mice. These findings have clinical implications, especially since women are at higher risk for AD diagnosis. Together, it is my hope that this information adds to the overarching goal of optimizing cognitive aging in women.
ContributorsBraden, Brittany Blair (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Neisewander, Janet L (Committee member) / Conrad, Cheryl D. (Committee member) / Baxter, Leslie C (Committee member) / Arizona State University (Publisher)
Created2012
153256-Thumbnail Image.png
Description
Smoking remains the leading cause of preventable death in the United States, and early initiation is associated with greater difficulty quitting. Among adolescent smokers, those with attention-deficit hyperactivity disorder (ADHD), characterized by difficulties associated with impulsivity, hyperactivity, and inattention, smoke at nearly twice the rate of their peers.

Smoking remains the leading cause of preventable death in the United States, and early initiation is associated with greater difficulty quitting. Among adolescent smokers, those with attention-deficit hyperactivity disorder (ADHD), characterized by difficulties associated with impulsivity, hyperactivity, and inattention, smoke at nearly twice the rate of their peers. Although cigarette smoking is highly addictive, nicotine is a relatively weak primary reinforcer, spurring research on other potential targets that may maintain smoking, including the potential benefits of nicotine on attention, inhibition, and reinforcer efficacy. The present study employs the most prevalent rodent model of ADHD, the spontaneously hypertensive rat (SHR) and its control comparison Wistar Kyoto (WKY) to examine the effects of acute and chronic subcutaneous nicotine injections on performance in three operant response inhibition paradigms. Functional activation in select regions of the prefrontal cortex and striatum was also explored. Acute (0.1, 0.3, 0.6 mg/kg) and chronic (0.3 mg/kg) nicotine increased impulsive responding regardless of strain, dose, or operant schedule. Dose-dependent decreases in latency to initiate the task were also observed. SHR receiving daily nicotine injections showed less activation in the nucleus accumbens shell compared to saline controls. Despite close similarities, one of the three operant tasks did not detect response inhibition deficits in SHR relative to WKY. A closer examination of these tasks may highlight critical components involved in the amelioration of response inhibition deficits.
ContributorsMazur, Gabriel Joseph (Author) / Sanabria, Federico (Thesis advisor) / Killeen, Peter R (Committee member) / Neisewander, Janet L (Committee member) / Wynne, Clive DL (Committee member) / Arizona State University (Publisher)
Created2014
149824-Thumbnail Image.png
Description
Nicotine is thought to underlie the reinforcing and dependence-producing effects of tobacco-containing products. Nicotine supports self-administration in rodents, although measures of its reinforcing effects are often confounded by procedures that are used to facilitate acquisition, such as food restriction, prior reinforcement training, or response-contingent co-delivery of a naturally reinforcing light.

Nicotine is thought to underlie the reinforcing and dependence-producing effects of tobacco-containing products. Nicotine supports self-administration in rodents, although measures of its reinforcing effects are often confounded by procedures that are used to facilitate acquisition, such as food restriction, prior reinforcement training, or response-contingent co-delivery of a naturally reinforcing light. This study examined whether rats acquire nicotine self-administration in the absence of these facilitators. A new mathematical modeling procedure was used to define the criterion for acquisition and to determine dose-dependent differences in rate and asymptote levels of intake. Rats were trained across 20 daily 2-h sessions occurring 6 days/week in chambers equipped with active and inactive levers. Each active lever press resulted in nicotine reinforcement (0, 0.015, 0.03, 0.06 mg/kg, IV) and retraction of both levers for a 20-s time out, whereas inactive lever presses had no consequences. Acquisition was defined by the best fit of a logistic function (i.e., S-shaped) versus a constant function (i.e., flat line) for reinforcers obtained across sessions using a corrected Akaike information criterion (AICc) as a model selection tool. The results showed an inverted-U shaped function for dose in relation to the percentage of animals that acquired nicotine self-administration, with 46% acquiring at 0.015 mg/kg, 73% at 0.03 mg/kg, and 58% at 0.06 mg/kg. All saline rats failed to acquire as expected. For rats that acquired nicotine self-administration, multiple model comparisons demonstrated that the asymptote (highest number of reinforcers/session) and half learning point (h; session during which half the assymptote had been achieved) were justified as free parameters of the reinforcers/session function, indicating that these parameters vary with nicotine dose. Asymptote exhibited an inverted U-shaped function across doses and half learning point exhibited a negative relationship to dose (i.e., the higher the dose the fewer sessions to reach h). These findings suggest that some rats acquire nicotine self-administration without using procedures that confound measures of acquisition rate. Furthermore, the modeling approach provides a new way of defining acquisition of drug self-administration that takes advantage of using all data generated from individual subjects and is less arbitrary than some criteria that are currently used.
ContributorsCole, Natalie (Author) / Neisewander, Janet L (Thesis advisor) / Sanabria, Federico (Thesis advisor) / Bimonte-Nelson, Heather A. (Committee member) / Olive, Michael F (Committee member) / Arizona State University (Publisher)
Created2011
150179-Thumbnail Image.png
Description
Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and

Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and in females alone ovarian hormones have been found to alter spatial memory via modulating brain microstructure and function in many of the same brain areas affected by aging. The research in this dissertation has implications that promote an understanding of the effects of cognitive practice on aging memory, why males and females respond differently to cognitive practice, and the parameters and mechanisms underlying estrogen's effects on memory. This body of work suggests that cognitive practice can enhance memory when aged and that estrogen is a probable candidate facilitating the observed differences in the effects of cognitive practice depending on sex. This enhancement in cognitive practice effects via estrogen is supported by data demonstrating that estrogen enhances spatial memory and hippocampal synaptic plasticity. The estrogen-facilitated memory enhancements and alterations in hippocampal synaptic plasticity are at least partially facilitated via enhancements in cholinergic signaling from the basal forebrain. Finally, age, dose, and type of estrogen utilized are important factors to consider when evaluating estrogen's effects on memory and its underlying mechanisms, since age alters the responsiveness to estrogen treatment and the dose of estrogen needed, and small alterations in the molecular structure of estrogen can have a profound impact on estrogen's efficacy on memory. Collectively, this dissertation elucidates many parameters that dictate the outcome, and even the direction, of the effects that cognitive practice and estrogens have on cognition during aging. Indeed, many parameters including the ones described here are important considerations when designing future putative behavioral interventions, behavioral therapies, and hormone therapies. Ideally, the parameters described here will be used to help design the next generation of interventions, therapies, and nootropic agents that will allow individuals to maintain their cognitive capacity when aged, above and beyond what is currently possible, thus enacting lasting improvement in women's health and public health in general.
ContributorsTalboom, Joshua S (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl D. (Committee member) / Neisewander, Janet L (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2011