Matching Items (3)
Filtering by

Clear all filters

156718-Thumbnail Image.png
Description
Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the

Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the gait dynamic stability.

A knee exoskeleton and ankle assistive device (Robotic Shoe) are developed and used to provide walking assistance. The knee exoskeleton provides personalized knee joint assistive torque during the stance phase. The robotic shoe is a light-weighted mechanism that can store the potential energy at heel strike and release it by using an active locking mechanism at the terminal stance phase to provide push-up ankle torque and assist the toe-off. Lower-limb Kinematic time series data are collected for subjects wearing these devices in the passive and active mode. The changes of kinematics with and without these devices on lower-limb motion are first studied. Orbital stability, as one of the commonly used measure to quantify gait stability through calculating Floquet Multipliers (FM), is employed to asses the effects of these wearable devices on gait stability. It is shown that wearing the passive knee exoskeleton causes less orbitally stable gait for users, while the knee joint active assistance improves the orbital stability compared to passive mode. The robotic shoe only affects the targeted joint (right ankle) kinematics, and wearing the passive mechanism significantly increases the ankle joint FM values, which indicates less walking orbital stability. More analysis is done on a mechanically perturbed walking public data set, to show that orbital stability can quantify the effects of external mechanical perturbation on gait dynamic stability. This method can further be used as a control design tool to ensure gait stability for users of lower-limb assistive devices.
ContributorsRezayat Sorkhabadi, Seyed Mostafa (Author) / Zhang, Wenlong (Thesis advisor) / Lee, Hyunglae (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
161365-Thumbnail Image.png
Description
This paper introduces a variable impedance controller which dynamically modulates both its damping and stiffness to improve the trade-off between stability and agility in coupled human-robot systems and reduce the human user’s effort. The controller applies a range of robotic damping from negative to positive values to either inject or

This paper introduces a variable impedance controller which dynamically modulates both its damping and stiffness to improve the trade-off between stability and agility in coupled human-robot systems and reduce the human user’s effort. The controller applies a range of robotic damping from negative to positive values to either inject or dissipate energy based on the user’s intent of motion. The controller also estimates the user’s intent of direction and applies a variable stiffness torque to stabilize the user towards an estimated ideal trajectory. To evaluate the controller’s ability to improve the stability/agility trade-off and reduce human effort, a study was designed for human subjects to perform a 2D target reaching task while coupled with a wearable ankle robot. A constant impedance condition was selected as a control with which to compare the variable impedance condition. The position, speed, and muscle activation responses were used to quantify the user’s stability, agility, and effort, respectively. Stability was quantified spatially and temporally, with both overshoot and stabilization time showing no statistically significant difference between the two experimental conditions. Agility was quantified using mean and maximum speed, with both increasing from the constant impedance to variable impedance condition by 29.8% and 59.9%, respectively. Effort was quantified by the overall and maximum muscle activation data, both of which showed a ~10% reduction in effort. Overall, the study demonstrated the effectiveness of the variable impedance controller.
ContributorsArnold, James (Author) / Lee, Hyunglae (Thesis advisor) / Berman, Spring (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2021
131841-Thumbnail Image.png
Description
This paper presents the design of a pneumatic actuator for a soft ankle-foot orthosis, called the Multi-material Actuator for Variable Stiffness (MAVS). This pneumatic actuator consists of an inflatable soft fabric actuator fixed between two layers of rigid retainer pieces. The MAVS is designed to be integrated with a soft

This paper presents the design of a pneumatic actuator for a soft ankle-foot orthosis, called the Multi-material Actuator for Variable Stiffness (MAVS). This pneumatic actuator consists of an inflatable soft fabric actuator fixed between two layers of rigid retainer pieces. The MAVS is designed to be integrated with a soft robotic ankle-foot orthosis (SR-AFO) exosuit to aid in supporting the human ankle in the inversion/eversion directions. This design aims to assist individuals affected with chronic ankle instability (CAI) or other impairments to the ankle joint. The MAVS design is made from compliant fabric materials, layered and constrained by thin rigid retainers to prevent volume increase during actuation. The design was optimized to provide the greatest stiffness and least deflection for a beam positioned as a cantilever with a point load. The design of the MAVS took into account passive stiffness of the actuator when combining rigid and compliant materials so that stiffness is maximized when inflated and minimal when passive. An analytic model of the MAVS was created to evaluate the effects in stiffness observed by varying the ratio in length between the rigid pieces and the soft actuator. The results from the analytic model were compared to experimentally obtained results of the MAVS. The MAVS with the greatest stiffness was observed when the gap between the rigid retainers was smallest and the rigid retainer length was smallest. The MAVS design with the highest stiffness at 100 kPa was determined, which required 26.71 ± 0.06 N to deflect the actuator 20 mm, and a resulting stiffness of 1,335.5 N/m and 9.1% margin of error from the model predictions.
ContributorsHertzell, Tiffany (Author) / Lee, Hyunglae (Thesis director) / Sugar, Thomas (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05