Matching Items (43)
155897-Thumbnail Image.png
Description
Machine learning technology has made a lot of incredible achievements in recent years. It has rivalled or exceeded human performance in many intellectual tasks including image recognition, face detection and the Go game. Many machine learning algorithms require huge amount of computation such as in multiplication of large matrices. As

Machine learning technology has made a lot of incredible achievements in recent years. It has rivalled or exceeded human performance in many intellectual tasks including image recognition, face detection and the Go game. Many machine learning algorithms require huge amount of computation such as in multiplication of large matrices. As silicon technology has scaled to sub-14nm regime, simply scaling down the device cannot provide enough speed-up any more. New device technologies and system architectures are needed to improve the computing capacity. Designing specific hardware for machine learning is highly in demand. Efforts need to be made on a joint design and optimization of both hardware and algorithm.

For machine learning acceleration, traditional SRAM and DRAM based system suffer from low capacity, high latency, and high standby power. Instead, emerging memories, such as Phase Change Random Access Memory (PRAM), Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM), and Resistive Random Access Memory (RRAM), are promising candidates providing low standby power, high data density, fast access and excellent scalability. This dissertation proposes a hierarchical memory modeling framework and models PRAM and STT-MRAM in four different levels of abstraction. With the proposed models, various simulations are conducted to investigate the performance, optimization, variability, reliability, and scalability.

Emerging memory devices such as RRAM can work as a 2-D crosspoint array to speed up the multiplication and accumulation in machine learning algorithms. This dissertation proposes a new parallel programming scheme to achieve in-memory learning with RRAM crosspoint array. The programming circuitry is designed and simulated in TSMC 65nm technology showing 900X speedup for the dictionary learning task compared to the CPU performance.

From the algorithm perspective, inspired by the high accuracy and low power of the brain, this dissertation proposes a bio-plausible feedforward inhibition spiking neural network with Spike-Rate-Dependent-Plasticity (SRDP) learning rule. It achieves more than 95% accuracy on the MNIST dataset, which is comparable to the sparse coding algorithm, but requires far fewer number of computations. The role of inhibition in this network is systematically studied and shown to improve the hardware efficiency in learning.
ContributorsXu, Zihan (Author) / Cao, Yu (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Seo, Jae-Sun (Committee member) / Yu, Shimeng (Committee member) / Arizona State University (Publisher)
Created2017
155167-Thumbnail Image.png
Description
As digital images are transmitted over the network or stored on a disk, image processing is done as part of the standard for efficient storage and bandwidth. This causes some amount of distortion or artifacts in the image which demands the need for quality assessment. Subjective image quality assessment is

As digital images are transmitted over the network or stored on a disk, image processing is done as part of the standard for efficient storage and bandwidth. This causes some amount of distortion or artifacts in the image which demands the need for quality assessment. Subjective image quality assessment is expensive, time consuming and influenced by the subject's perception. Hence, there is a need for developing mathematical models that are capable of predicting the quality evaluation. With the advent of the information era and an exponential growth in image/video generation and consumption, the requirement for automated quality assessment has become mandatory to assess the degradation. The last few decades have seen research on automated image quality assessment (IQA) algorithms gaining prominence. However, the focus has been on achieving better predication accuracy, and not on improving computational performance. As a result, existing serial implementations require a lot of time in processing a single frame. In the last 5 years, research on general-purpose graphic processing unit (GPGPU) based image quality assessment (IQA) algorithm implementation has shown promising results for single images. Still, the implementations are not efficient enough for deployment in real world applications, especially for live videos at high resolution. Hence, in this thesis, it is proposed that microarchitecture-conscious coding on a graphics processing unit (GPU) combined with detailed understanding of the image quality assessment (IQA) algorithm can result in non-trivial speedups without compromising quality prediction accuracy. This document focusses on the microarchitectural analysis of the most apparent distortion (MAD) algorithm. The results are analyzed in-depth and one of the major bottlenecks is identified. With the knowledge of underlying microarchitecture, the implementation is restructured thereby resolving the bottleneck and improving the performance.
ContributorsKannan, Vignesh (Author) / Sohoni, Sohum (Thesis advisor) / Ren, Fengbo (Committee member) / Sayeed, Mohamed (Committee member) / Arizona State University (Publisher)
Created2016
152082-Thumbnail Image.png
Description
While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network entities. First, we study how the selfish behavior of network entities affects the system performance while users are competing for limited resource. For this resource allocation domain, we aim to study the selfish routing problem in networks with fair queuing on links, the relay assignment problem in cooperative networks, and the channel allocation problem in wireless networks. Another important aspect of this dissertation is the study of designing efficient mechanisms to incentivize network entities to achieve certain system objective. For this incentive mechanism domain, we aim to motivate wireless devices to serve as relays for cooperative communication, and to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic approaches to problems in security and privacy domain. For this domain, we aim to analyze how a user could defend against a smart jammer, who can quickly learn about the user's transmission power. We also design mechanisms to encourage mobile phone users to participate in location privacy protection, in order to achieve k-anonymity.
ContributorsYang, Dejun (Author) / Xue, Guoliang (Thesis advisor) / Richa, Andrea (Committee member) / Sen, Arunabha (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
149373-Thumbnail Image.png
Description
Natural Language Processing is a subject that combines computer science and linguistics, aiming to provide computers with the ability to understand natural language and to develop a more intuitive human-computer interaction. The research community has developed ways to translate natural language to mathematical formalisms. It has not yet been shown,

Natural Language Processing is a subject that combines computer science and linguistics, aiming to provide computers with the ability to understand natural language and to develop a more intuitive human-computer interaction. The research community has developed ways to translate natural language to mathematical formalisms. It has not yet been shown, however, how to automatically translate different kinds of knowledge in English to distinct formal languages. Most of the recent work presents the problem that the translation method aims to a specific formal language or is hard to generalize. In this research, I take a first step to overcome this difficulty and present two algorithms which take as input two lambda-calculus expressions G and H and compute a lambda-calculus expression F. The expression F returned by the first algorithm satisfies F@G=H and, in the case of the second algorithm, we obtain G@F=H. The lambda expressions represent the meanings of words and sentences. For each formal language that one desires to use with the algorithms, the language must be defined in terms of lambda calculus. Also, some additional concepts must be included. After doing this, given a sentence, its representation and knowing the representation of several words in the sentence, the algorithms can be used to obtain the representation of the other words in that sentence. In this work, I define two languages and show examples of their use with the algorithms. The algorithms are illustrated along with soundness and completeness proofs, the latter with respect to typed lambda-calculus formulas up to the second order. These algorithms are a core part of a natural language semantics system that translates sentences from English to formulas in different formal languages.
ContributorsAlvarez Gonzalez, Marcos (Author) / Baral, Chitta (Thesis advisor) / Lee, Joohyung (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2010
135739-Thumbnail Image.png
Description
Many programmable matter systems have been proposed and realized recently, each often tailored toward a particular task or physical setting. In our work on self-organizing particle systems, we abstract away from specific settings and instead describe programmable matter as a collection of simple computational elements (to be referred to as

Many programmable matter systems have been proposed and realized recently, each often tailored toward a particular task or physical setting. In our work on self-organizing particle systems, we abstract away from specific settings and instead describe programmable matter as a collection of simple computational elements (to be referred to as particles) with limited computational power that each perform fully distributed, local, asynchronous algorithms to solve system-wide problems of movement, configuration, and coordination. In this thesis, we focus on the compression problem, in which the particle system gathers as tightly together as possible, as in a sphere or its equivalent in the presence of some underlying geometry. While there are many ways to formalize what it means for a particle system to be compressed, we address three different notions of compression: (1) local compression, in which each individual particle utilizes local rules to create an overall convex structure containing no holes, (2) hole elimination, in which the particle system seeks to detect and eliminate any holes it contains, and (3) alpha-compression, in which the particle system seeks to shrink its perimeter to be within a constant factor of the minimum possible value. We analyze the behavior of each of these algorithms, examining correctness and convergence where appropriate. In the case of the Markov Chain Algorithm for Compression, we provide improvements to the original bounds for the bias parameter lambda which influences the system to either compress or expand. Lastly, we briefly discuss contributions to the problem of leader election--in which a particle system elects a single leader--since it acts as an important prerequisite for compression algorithms that use a predetermined seed particle.
ContributorsDaymude, Joshua Jungwoo (Author) / Richa, Andrea (Thesis director) / Kierstead, Henry (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147564-Thumbnail Image.png
Description

The era of mass data collection is upon us and only recently have people begun to consider the value of their data. All of our clicks and likes have helped big tech companies build predictive models to tailor their product to the buying patterns of the consumer. Big

The era of mass data collection is upon us and only recently have people begun to consider the value of their data. All of our clicks and likes have helped big tech companies build predictive models to tailor their product to the buying patterns of the consumer. Big data collection has its advantages in increasing profitability and efficiency, but many are concerned about the lack of transparency in these technologies (Dwyer). The dependency on algorithms to make and influence decisions has become a growing concern in law enforcement. The use of this technology is commonly referred to as data-driven decision making, which is also known as predictive policing. These technologies are thought to reduce the biases held in traditional policing by creating statistically sound evidence-based models. Although, many lawsuits have highlighted the fact that predictive technologies do more to reflect historical bias rather than to eradicate it. The clandestine measures behind the algorithms may be in conflict with the due process clause and the penumbra of privacy rights enumerated in the First, Third, Fourth, and Fifth Amendments. <br/> Predictive policing technology has come under fire for over policing historically black and latinx neighborhoods. GIS (Geographical Information Systems) is supposed to help officers identify where crime will likely happen over the next twelve hours. However, the LAPD’s own internal audit of their program concluded that the technology did not help officers solve crimes or reduce crime rate any better than traditional patrol methods (Puente). Similarly, other types of tools used to calculate recidivism risk for bond sentencing are disproportionately biased to calculate black people as having a higher risk to reoffend (Angwin). Lawsuits from civil liberties groups have been filed against the police departments that utilized these technologies. This paper will examine the constitutional pitfalls of predictive technology and propose ways that the system could work to ameliorate its practices.

ContributorsKlein, Johannah Marie (Co-author) / Klein, JoHannah (Co-author) / Koretz, Lora (Thesis director) / Hoekstra, Valerie (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148207-Thumbnail Image.png
Description

Optimal foraging theory provides a suite of tools that model the best way that an animal will <br/>structure its searching and processing decisions in uncertain environments. It has been <br/>successful characterizing real patterns of animal decision making, thereby providing insights<br/>into why animals behave the way they do. However, it does

Optimal foraging theory provides a suite of tools that model the best way that an animal will <br/>structure its searching and processing decisions in uncertain environments. It has been <br/>successful characterizing real patterns of animal decision making, thereby providing insights<br/>into why animals behave the way they do. However, it does not speak to how animals make<br/>decisions that tend to be adaptive. Using simulation studies, prior work has shown empirically<br/>that a simple decision-making heuristic tends to produce prey-choice behaviors that, on <br/>average, match the predicted behaviors of optimal foraging theory. That heuristic chooses<br/>to spend time processing an encountered prey item if that prey item's marginal rate of<br/>caloric gain (in calories per unit of processing time) is greater than the forager's<br/>current long-term rate of accumulated caloric gain (in calories per unit of total searching<br/>and processing time). Although this heuristic may seem intuitive, a rigorous mathematical<br/>argument for why it tends to produce the theorized optimal foraging theory behavior has<br/>not been developed. In this thesis, an analytical argument is given for why this<br/>simple decision-making heuristic is expected to realize the optimal performance<br/>predicted by optimal foraging theory. This theoretical guarantee not only provides support<br/>for why such a heuristic might be favored by natural selection, but it also provides<br/>support for why such a heuristic might a reliable tool for decision-making in autonomous<br/>engineered agents moving through theatres of uncertain rewards. Ultimately, this simple<br/>decision-making heuristic may provide a recipe for reinforcement learning in small robots<br/>with little computational capabilities.

ContributorsCothren, Liliaokeawawa Kiyoko (Author) / Pavlic, Theodore (Thesis director) / Brewer, Naala (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147863-Thumbnail Image.png
Description

Over the years, advances in research have continued to decrease the size of computers from the size of<br/>a room to a small device that could fit in one’s palm. However, if an application does not require extensive<br/>computation power nor accessories such as a screen, the corresponding machine could be microscopic,<br/>only

Over the years, advances in research have continued to decrease the size of computers from the size of<br/>a room to a small device that could fit in one’s palm. However, if an application does not require extensive<br/>computation power nor accessories such as a screen, the corresponding machine could be microscopic,<br/>only a few nanometers big. Researchers at MIT have successfully created Syncells, which are micro-<br/>scale robots with limited computation power and memory that can communicate locally to achieve<br/>complex collective tasks. In order to control these Syncells for a desired outcome, they must each run a<br/>simple distributed algorithm. As they are only capable of local communication, Syncells cannot receive<br/>commands from a control center, so their algorithms cannot be centralized. In this work, we created a<br/>distributed algorithm that each Syncell can execute so that the system of Syncells is able to find and<br/>converge to a specific target within the environment. The most direct applications of this problem are in<br/>medicine. Such a system could be used as a safer alternative to invasive surgery or could be used to treat<br/>internal bleeding or tumors. We tested and analyzed our algorithm through simulation and visualization<br/>in Python. Overall, our algorithm successfully caused the system of particles to converge on a specific<br/>target present within the environment.

ContributorsMartin, Rebecca Clare (Author) / Richa, Andréa (Thesis director) / Lee, Heewook (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Within the last decade, there has been a lot of hype surrounding the potential medical applications of artificial intelligence (AI) and machine learning (ML) technologies. During the same timespan, big tech companies such as Microsoft, Apple, Amazon, and Google have entered the healthcare market as developers of health-based AI and

Within the last decade, there has been a lot of hype surrounding the potential medical applications of artificial intelligence (AI) and machine learning (ML) technologies. During the same timespan, big tech companies such as Microsoft, Apple, Amazon, and Google have entered the healthcare market as developers of health-based AI and ML technologies. This project aims to create a comprehensive map of the existing health-AI market landscape for the standard biotech reader and to provide a critical commentary on the existing market structure.

ContributorsWehelie, Sumayah A (Author) / Frow, Emma (Thesis director) / Maynard, Andrew (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
186420-Thumbnail Image.png
Description
Primary care providers (PCPs) are frequently the first line of treatment for suicidal ideation (SI) patients. Many PCPs report low self-efficacy in treating suicidal patients, leading to inappropriate treatment plans or avoidance of discussing SI. This quality improvement project based on the Uncertainty Reduction theory aimed to evaluate PCP's perceptions

Primary care providers (PCPs) are frequently the first line of treatment for suicidal ideation (SI) patients. Many PCPs report low self-efficacy in treating suicidal patients, leading to inappropriate treatment plans or avoidance of discussing SI. This quality improvement project based on the Uncertainty Reduction theory aimed to evaluate PCP's perceptions of an SI treatment algorithm and its impact on self-efficacy. Secondary aims included assessing PCP's confidence in treating suicidal patients and current treatment practices. A pre- then post-intervention survey design was utilized. All PCPs treating patients in a military medicine clinic were invited to participate in the project. Participants were sent a recruitment email containing the suicidal ideation treatment algorithm and a link to a survey developed with Qualtrics software. Participants were asked to review the SI algorithm, answer the baseline survey questions, and complete a second eight-week survey. For human subjects' protection, the survey responses were anonymous. Demographic data collected included years of clinical experience and licensure type. The data were evaluated with Intellectus software. Due to limited participation, N=4, there was insufficient data to determine the significance of implementing the SI algorithm in a primary care clinic. Central tendencies showed that most providers (n=3, 75.00%) felt less than confident treating suicidal patients. Half of the providers asked non-mental health patients about suicide less than 40% of the time (n=2, 50.00%). The data suggest that PCPs feel uncomfortable treating suicidal patients and may benefit from additional resources and training in this area.
Created2022-04-26