Matching Items (7)
Filtering by

Clear all filters

157245-Thumbnail Image.png
Description
In the realm of network science, many topics can be abstracted as graph problems, such as routing, connectivity enhancement, resource/frequency allocation and so on. Though most of them are NP-hard to solve, heuristics as well as approximation algorithms are proposed to achieve reasonably good results. Accordingly, this dissertation studies graph

In the realm of network science, many topics can be abstracted as graph problems, such as routing, connectivity enhancement, resource/frequency allocation and so on. Though most of them are NP-hard to solve, heuristics as well as approximation algorithms are proposed to achieve reasonably good results. Accordingly, this dissertation studies graph related problems encountered in real applications. Two problems studied in this dissertation are derived from wireless network, two more problems studied are under scenarios of FIWI and optical network, one more problem is in Radio- Frequency Identification (RFID) domain and the last problem is inspired by satellite deployment.

The objective of most of relay nodes placement problems, is to place the fewest number of relay nodes in the deployment area so that the network, formed by the sensors and the relay nodes, is connected. Under the fixed budget scenario, the expense involved in procuring the minimum number of relay nodes to make the network connected, may exceed the budget. In this dissertation, we study a family of problems whose goal is to design a network with “maximal connectedness” or “minimal disconnectedness”, subject to a fixed budget constraint. Apart from “connectivity”, we also study relay node problem in which degree constraint is considered. The balance of reducing the degree of the network while maximizing communication forms the basis of our d-degree minimum arrangement(d-MA) problem. In this dissertation, we look at several approaches to solving the generalized d-MA problem where we embed a graph onto a subgraph of a given degree.

In recent years, considerable research has been conducted on optical and FIWI networks. Utilizing a recently proposed concept “candidate trees” in optical network, this dissertation studies counting problem on complete graphs. Closed form expressions are given for certain cases and a polynomial counting algorithm for general cases is also presented. Routing plays a major role in FiWi networks. Accordingly to a novel path length metric which emphasizes on “heaviest edge”, this dissertation proposes a polynomial algorithm on single path computation. NP-completeness proof as well as approximation algorithm are presented for multi-path routing.

Radio-frequency identification (RFID) technology is extensively used at present for identification and tracking of a multitude of objects. In many configurations, simultaneous activation of two readers may cause a “reader collision” when tags are present in the intersection of the sensing ranges of both readers. This dissertation ad- dresses slotted time access for Readers and tries to provide a collision-free scheduling scheme while minimizing total reading time.

Finally, this dissertation studies a monitoring problem on the surface of the earth for significant environmental, social/political and extreme events using satellites as sensors. It is assumed that the impact of a significant event spills into neighboring regions and there will be corresponding indicators. Careful deployment of sensors, utilizing “Identifying Codes”, can ensure that even though the number of deployed sensors is fewer than the number of regions, it may be possible to uniquely identify the region where the event has taken place.
ContributorsZhou, Chenyang (Author) / Richa, Andrea (Thesis advisor) / Sen, Arunabha (Thesis advisor) / Xue, Guoliang (Committee member) / Walkowiak, Krzysztof (Committee member) / Arizona State University (Publisher)
Created2019
153574-Thumbnail Image.png
Description
In trading, volume is a measure of how much stock has been exchanged in a given period of time. Since every stock is distinctive and has an alternate measure of shares, volume can be contrasted with historical volume inside a stock to spot changes. It is likewise used to affirm

In trading, volume is a measure of how much stock has been exchanged in a given period of time. Since every stock is distinctive and has an alternate measure of shares, volume can be contrasted with historical volume inside a stock to spot changes. It is likewise used to affirm value patterns, breakouts, and spot potential reversals. In my thesis, I hypothesize that the concept of trading volume can be extrapolated to social media (Twitter).

The ubiquity of social media, especially Twitter, in financial market has been overly resonant in the past couple of years. With the growth of its (Twitter) usage by news channels, financial experts and pandits, the global economy does seem to hinge on 140 characters. By analyzing the number of tweets hash tagged to a stock, a strong relation can be established between the number of people talking about it, to the trading volume of the stock.

In my work, I overt this relation and find a state of the breakout when the volume goes beyond a characterized support or resistance level.
ContributorsAwasthi, Piyush (Author) / Davulcu, Hasan (Thesis advisor) / Tong, Hanghang (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2015
155032-Thumbnail Image.png
Description
We live in a networked world with a multitude of networks, such as communication networks, electric power grid, transportation networks and water distribution networks, all around us. In addition to such physical (infrastructure) networks, recent years have seen tremendous proliferation of social networks, such as Facebook, Twitter, LinkedIn, Instagram, Google+

We live in a networked world with a multitude of networks, such as communication networks, electric power grid, transportation networks and water distribution networks, all around us. In addition to such physical (infrastructure) networks, recent years have seen tremendous proliferation of social networks, such as Facebook, Twitter, LinkedIn, Instagram, Google+ and others. These powerful social networks are not only used for harnessing revenue from the infrastructure networks, but are also increasingly being used as “non-conventional sensors” for monitoring the infrastructure networks. Accordingly, nowadays, analyses of social and infrastructure networks go hand-in-hand. This dissertation studies resource allocation problems encountered in this set of diverse, heterogeneous, and interdependent networks. Three problems studied in this dissertation are encountered in the physical network domain while the three other problems studied are encountered in the social network domain.

The first problem from the infrastructure network domain relates to distributed files storage scheme with a goal of enhancing robustness of data storage by making it tolerant against large scale geographically-correlated failures. The second problem relates to placement of relay nodes in a deployment area with multiple sensor nodes with a goal of augmenting connectivity of the resulting network, while staying within the budget specifying the maximum number of relay nodes that can be deployed. The third problem studied in this dissertation relates to complex interdependencies that exist between infrastructure networks, such as power grid and communication network. The progressive recovery problem in an interdependent network is studied whose goal is to maximize system utility over the time when recovery process of failed entities takes place in a sequential manner.

The three problems studied from the social network domain relate to influence propagation in adversarial environment and political sentiment assessment in various states in a country with a goal of creation of a “political heat map” of the country. In the first problem of the influence propagation domain, the goal of the second player is to restrict the influence of the first player, while in the second problem the goal of the second player is to have a larger market share with least amount of initial investment.
ContributorsMazumder, Anisha (Author) / Sen, Arunabha (Thesis advisor) / Richa, Andrea (Committee member) / Xue, Guoliang (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2016
152082-Thumbnail Image.png
Description
While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network entities. First, we study how the selfish behavior of network entities affects the system performance while users are competing for limited resource. For this resource allocation domain, we aim to study the selfish routing problem in networks with fair queuing on links, the relay assignment problem in cooperative networks, and the channel allocation problem in wireless networks. Another important aspect of this dissertation is the study of designing efficient mechanisms to incentivize network entities to achieve certain system objective. For this incentive mechanism domain, we aim to motivate wireless devices to serve as relays for cooperative communication, and to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic approaches to problems in security and privacy domain. For this domain, we aim to analyze how a user could defend against a smart jammer, who can quickly learn about the user's transmission power. We also design mechanisms to encourage mobile phone users to participate in location privacy protection, in order to achieve k-anonymity.
ContributorsYang, Dejun (Author) / Xue, Guoliang (Thesis advisor) / Richa, Andrea (Committee member) / Sen, Arunabha (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
149373-Thumbnail Image.png
Description
Natural Language Processing is a subject that combines computer science and linguistics, aiming to provide computers with the ability to understand natural language and to develop a more intuitive human-computer interaction. The research community has developed ways to translate natural language to mathematical formalisms. It has not yet been shown,

Natural Language Processing is a subject that combines computer science and linguistics, aiming to provide computers with the ability to understand natural language and to develop a more intuitive human-computer interaction. The research community has developed ways to translate natural language to mathematical formalisms. It has not yet been shown, however, how to automatically translate different kinds of knowledge in English to distinct formal languages. Most of the recent work presents the problem that the translation method aims to a specific formal language or is hard to generalize. In this research, I take a first step to overcome this difficulty and present two algorithms which take as input two lambda-calculus expressions G and H and compute a lambda-calculus expression F. The expression F returned by the first algorithm satisfies F@G=H and, in the case of the second algorithm, we obtain G@F=H. The lambda expressions represent the meanings of words and sentences. For each formal language that one desires to use with the algorithms, the language must be defined in terms of lambda calculus. Also, some additional concepts must be included. After doing this, given a sentence, its representation and knowing the representation of several words in the sentence, the algorithms can be used to obtain the representation of the other words in that sentence. In this work, I define two languages and show examples of their use with the algorithms. The algorithms are illustrated along with soundness and completeness proofs, the latter with respect to typed lambda-calculus formulas up to the second order. These algorithms are a core part of a natural language semantics system that translates sentences from English to formulas in different formal languages.
ContributorsAlvarez Gonzalez, Marcos (Author) / Baral, Chitta (Thesis advisor) / Lee, Joohyung (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2010
158544-Thumbnail Image.png
Description
This thesis addresses the following fundamental maximum throughput routing problem: Given an arbitrary edge-capacitated n-node directed network and a set of k commodities, with source-destination pairs (s_i,t_i) and demands d_i> 0, admit and route the largest possible number of commodities -- i.e., the maximum throughput -- to satisfy their demands.

This thesis addresses the following fundamental maximum throughput routing problem: Given an arbitrary edge-capacitated n-node directed network and a set of k commodities, with source-destination pairs (s_i,t_i) and demands d_i> 0, admit and route the largest possible number of commodities -- i.e., the maximum throughput -- to satisfy their demands.

The main contributions of this thesis are three-fold: First, a bi-criteria approximation algorithm is presented for this all-or-nothing multicommodity flow (ANF) problem. This algorithm is the first to achieve a constant approximation of the maximum throughput with an edge capacity violation ratio that is at most logarithmic in n, with high probability. The approach used is based on a version of randomized rounding that keeps splittable flows, rather than approximating those via a non-splittable path for each commodity: This allows it to work for arbitrary directed edge-capacitated graphs, unlike most of the prior work on the ANF problem. The algorithm also works if a weighted throughput is considered, where the benefit gained by fully satisfying the demand for commodity i is determined by a given weight w_i>0. Second, a derandomization of the algorithm is presented that maintains the same approximation bounds, using novel pessimistic estimators for Bernstein's inequality. In addition, it is shown how the framework can be adapted to achieve a polylogarithmic fraction of the maximum throughput while maintaining a constant edge capacity violation, if the network capacity is large enough. Lastly, one important aspect of the randomized and derandomized algorithms is their simplicity, which lends to efficient implementations in practice. The implementations of both randomized rounding and derandomized algorithms for the ANF problem are presented and show their efficiency in practice.
ContributorsChaturvedi, Anya (Author) / Richa, Andréa W. (Thesis advisor) / Sen, Arunabha (Committee member) / Schmid, Stefan (Committee member) / Arizona State University (Publisher)
Created2020
151498-Thumbnail Image.png
Description
Nowadays, wireless communications and networks have been widely used in our daily lives. One of the most important topics related to networking research is using optimization tools to improve the utilization of network resources. In this dissertation, we concentrate on optimization for resource-constrained wireless networks, and study two fundamental resource-allocation

Nowadays, wireless communications and networks have been widely used in our daily lives. One of the most important topics related to networking research is using optimization tools to improve the utilization of network resources. In this dissertation, we concentrate on optimization for resource-constrained wireless networks, and study two fundamental resource-allocation problems: 1) distributed routing optimization and 2) anypath routing optimization. The study on the distributed routing optimization problem is composed of two main thrusts, targeted at understanding distributed routing and resource optimization for multihop wireless networks. The first thrust is dedicated to understanding the impact of full-duplex transmission on wireless network resource optimization. We propose two provably good distributed algorithms to optimize the resources in a full-duplex wireless network. We prove their optimality and also provide network status analysis using dual space information. The second thrust is dedicated to understanding the influence of network entity load constraints on network resource allocation and routing computation. We propose a provably good distributed algorithm to allocate wireless resources. In addition, we propose a new subgradient optimization framework, which can provide findgrained convergence, optimality, and dual space information at each iteration. This framework can provide a useful theoretical foundation for many networking optimization problems. The study on the anypath routing optimization problem is composed of two main thrusts. The first thrust is dedicated to understanding the computational complexity of multi-constrained anypath routing and designing approximate solutions. We prove that this problem is NP-hard when the number of constraints is larger than one. We present two polynomial time K-approximation algorithms. One is a centralized algorithm while the other one is a distributed algorithm. For the second thrust, we study directional anypath routing and present a cross-layer design of MAC and routing. For the MAC layer, we present a directional anycast MAC. For the routing layer, we propose two polynomial time routing algorithms to compute directional anypaths based on two antenna models, and prove their ptimality based on the packet delivery ratio metric.
ContributorsFang, Xi (Author) / Xue, Guoliang (Thesis advisor) / Yau, Sik-Sang (Committee member) / Ye, Jieping (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013