Matching Items (4)
Filtering by

Clear all filters

133504-Thumbnail Image.png
Description
Escherichia coli is a bacterium that is used widely in metabolic engineering due to its ability to grow at a fast rate and to be cultured easily. E. coli can be engineered to produce many valuable chemicals, including biofuels and L-Phenylalanine—a precursor to many pharmaceuticals. Significant cell growth occurs in

Escherichia coli is a bacterium that is used widely in metabolic engineering due to its ability to grow at a fast rate and to be cultured easily. E. coli can be engineered to produce many valuable chemicals, including biofuels and L-Phenylalanine—a precursor to many pharmaceuticals. Significant cell growth occurs in parallel to the biosynthesis of the desired biofuel or biochemical product, and limits product concentrations and yields. Stopping cell growth can improve chemical production since more resources will go toward chemical production than toward biomass. The goal of the project is to test different methods of controlling microbial uptake of nutrients, specifically phosphate, to dynamically limit cell growth and improve biochemical production of E. coli, and the research has the potential to promote public health, sustainability, and environment. This can be achieved by targeting phosphate transporter genes using CRISPRi and CRISPR, and they will limit the uptake of phosphate by targeting the phosphate transporter genes in DNA, which will stop transcriptions of the genes. In the experiment, NST74∆crr∆pykAF, a L-Phe overproducer, was used as the base strain, and the pitA phosphate transporter gene was targeted in the CRISPRi and CRISPR systems with the strain with other phosphate transporters knocked out. The tested CRISPRi and CRISPR mechanisms did not stop cell growth or improved L-Phe production. Further research will be conducted to determine the problem of the system. In addition, the CRISPRi and CRISPR systems that target multiple phosphate transporter genes will be tested in the future as well as the other method of stopping transcriptions of the phosphate transporter genes, which is called a tunable toggle switch mechanism.
ContributorsPark, Min Su (Author) / Nielsen, David (Thesis director) / Machas, Michael (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
187561-Thumbnail Image.png
Description
Lignocellulose, the major structural component of plant biomass, represents arenewable substrate of enormous biotechnological value. Microbial production of chemicals from lignocellulosic biomass is an attractive alternative to chemical synthesis. However, to create industrially competitive strains to efficiently convert lignocellulose to high-value chemicals, current challenges must be addressed. Redox constraints, allosteric regulation, and transport-related limitations

Lignocellulose, the major structural component of plant biomass, represents arenewable substrate of enormous biotechnological value. Microbial production of chemicals from lignocellulosic biomass is an attractive alternative to chemical synthesis. However, to create industrially competitive strains to efficiently convert lignocellulose to high-value chemicals, current challenges must be addressed. Redox constraints, allosteric regulation, and transport-related limitations are important bottlenecks limiting the commercial production of renewable chemicals from lignocellulose. Advances in metabolic engineering techniques have enabled researchers to engineer microbial strains that overcome some of these challenges but new approaches that facilitate the commercial viability of lignocellulose valorization are needed. Biological systems are complex with a plethora of regulatory systems that must be carefully modulated to efficiently produce and excrete the desired metabolites. In this work, I explore metabolic engineering strategies to address some of the biological constraints limiting bioproduction such as redox, allosteric, and transport constraints to facilitate cost-effective lignocellulose bioconversion.
ContributorsOnyeabor, Moses Ekenedilichukwu (Author) / Wang, Xuan (Thesis advisor) / Varman, Arul M (Committee member) / Nannenga, Brent (Committee member) / Nielsen, David R (Committee member) / Geiler-Samerotte, Kerry (Committee member) / Arizona State University (Publisher)
Created2023
161493-Thumbnail Image.png
Description
Metabolic engineering of bacteria has become a viable technique as a sustainable and efficient method for the production of biochemicals. Two main goals were explored: investigating styrene tolerance genes in E. coli and engineering cyanobacteria for the high yield production of L-serine. In the first study, genes that were shown

Metabolic engineering of bacteria has become a viable technique as a sustainable and efficient method for the production of biochemicals. Two main goals were explored: investigating styrene tolerance genes in E. coli and engineering cyanobacteria for the high yield production of L-serine. In the first study, genes that were shown to be highly differentially expressed in E. coli upon styrene exposure were further investigated by testing the effects of their deletion and overexpression on styrene tolerance and growth. It was found that plsX, a gene responsible for the phospholipid formation in membranes, had the most promising results when overexpressed at 10 µM IPTG, with a relative OD600 of 706 ± 117% at 175 mg/L styrene when compared to the control plasmid at the same concentration. This gene is likely to be effective target when engineering styrene- and other aromatic-producing strains, increasing titers by reducing their cytotoxicity.In the second study, the goal is to engineer the cyanobacterium Synechococcus sp. PCC 7002 for the overproduction of L-serine. As a robust, photosynthetic bacteria, it has potential for being used in such-rich states to capture CO2 and produce industrially relevant products. In order to increase L-serine titers, a key degradation gene, ilvA, must be removed. While ilvA is responsible for degrading L-serine into pyruvate, it is also responsible for initiating the only known pathway for the production of isoleucine. Herein, we constructed a plasmid containing the native A0730 gene in order to investigate its potential to restore isoleucine production. If functional, a Synechococcus sp. PCC 7002 ΔilvA strain can then be engineered with minimal effects on growth and an expected increase in L-serine accumulation.
ContributorsAbed, Omar (Author) / Nielsen, David R (Thesis advisor) / Varman, Arul M (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2021
168596-Thumbnail Image.png
Description
Lignin is a naturally abundant source of aromatic carbon but is largely underutilized inindustry because it is difficult to decompose. Recent research activity has targeted the development of a biological platform for the conversion of lignin and lignin-derived feedstock. Corynebacterium glutamicum is a standout candidate for the bacterial depolymerization and assimilation of lignin

Lignin is a naturally abundant source of aromatic carbon but is largely underutilized inindustry because it is difficult to decompose. Recent research activity has targeted the development of a biological platform for the conversion of lignin and lignin-derived feedstock. Corynebacterium glutamicum is a standout candidate for the bacterial depolymerization and assimilation of lignin because of its performance as an industrial producer of amino acids, resistance to aromatic compounds in lignin, and low extracellular protease activity. Under the current study, nine experimental strains of C. glutamicum were engineered with sequencing-confirmed plasmids to overexpress and secrete lignin-modifying enzymes with the eventual goal of using lignin as raw feed for the sustainable production of valuable chemicals. Within the study, laccase and peroxidase activity were discovered to be decreased in C. glutamicum culture media. For laccase the decrease reached statistical significance, with an activity of about 10.9 U/L observed in water but only about 7.56 U/L and 7.42 U/L in fresh and spent BHI media, respectively, despite the same amounts of enzyme being added. Hypothesized reasons for this inhibitory effect are discussed here, but further work is needed to identify causative factors and realize the potential of C. glutamicum for waste biomass valorization.
ContributorsEllis, Dylan Scott (Author) / Varman, Arul M (Thesis advisor) / Lammers, Peter J (Committee member) / Long, Timothy E (Committee member) / Arizona State University (Publisher)
Created2022