Matching Items (7)
Filtering by

Clear all filters

136060-Thumbnail Image.png
Description
ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of

ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of these odorants is made possible by the chemoreceptive functions of sensilla basiconica and sensilla trichoid which exist on the antennal structure. The present study consists of both a morphological analysis and electrophysiological experiment concerning sensilla basiconica. It attempts to characterize the function of neurons present in sensilla basiconica through single sensillum recordings and contributes to existing literature by determining if a social insect, such as the dampwood termite, is able to perceive a wide spectrum of odorants despite having significantly fewer olfactory receptors than most other social insect species. Results indicated that sensilla basiconica presence significantly out-paced that of sensilla trichoid and sensilla chaetica combined, on all flagellomeres. Analysis demonstrated significant responses to all general odorants and several cuticular hydrocarbons. Combined with the knowledge of fewer olfactory receptors present in this species and their lifestyle, results may indicate a positive association between the the social complexity of an insect's lifestyle and the number of ORs the individuals within that colony possess.
ContributorsMcGlone, Taylor (Author) / Liebig, Juergen (Thesis director) / Ghaninia, Majid (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
148490-Thumbnail Image.png
Description

Lignin is a naturally abundant source of aromatic carbon but is largely underutilized in industry because it is difficult to decompose. Under the current study we engineered Corynebacterium glutamicum for the depolymerization of lignin with the goal of using it as raw feed for the sustainable production of valuable chemicals.

Lignin is a naturally abundant source of aromatic carbon but is largely underutilized in industry because it is difficult to decompose. Under the current study we engineered Corynebacterium glutamicum for the depolymerization of lignin with the goal of using it as raw feed for the sustainable production of valuable chemicals. C. glutamicum is a standout candidate for the depolymerization and assimilation of lignin because of its performance as an industrial producer of amino acids, resistance to aromatic compounds in lignin, and low extracellular protease activity. Three different foreign and native ligninolytic enzymes were tested in combination with three signal peptides to assess lignin degradation efficacy. At this stage, six of the nine plasmid constructs have been constructed.

ContributorsEllis, Dylan Scott (Author) / Varman, Arul Mozhy (Thesis director) / Nannenga, Brent (Committee member) / Nowroozi, Farnaz (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
187561-Thumbnail Image.png
Description
Lignocellulose, the major structural component of plant biomass, represents arenewable substrate of enormous biotechnological value. Microbial production of chemicals from lignocellulosic biomass is an attractive alternative to chemical synthesis. However, to create industrially competitive strains to efficiently convert lignocellulose to high-value chemicals, current challenges must be addressed. Redox constraints, allosteric regulation, and transport-related limitations

Lignocellulose, the major structural component of plant biomass, represents arenewable substrate of enormous biotechnological value. Microbial production of chemicals from lignocellulosic biomass is an attractive alternative to chemical synthesis. However, to create industrially competitive strains to efficiently convert lignocellulose to high-value chemicals, current challenges must be addressed. Redox constraints, allosteric regulation, and transport-related limitations are important bottlenecks limiting the commercial production of renewable chemicals from lignocellulose. Advances in metabolic engineering techniques have enabled researchers to engineer microbial strains that overcome some of these challenges but new approaches that facilitate the commercial viability of lignocellulose valorization are needed. Biological systems are complex with a plethora of regulatory systems that must be carefully modulated to efficiently produce and excrete the desired metabolites. In this work, I explore metabolic engineering strategies to address some of the biological constraints limiting bioproduction such as redox, allosteric, and transport constraints to facilitate cost-effective lignocellulose bioconversion.
ContributorsOnyeabor, Moses Ekenedilichukwu (Author) / Wang, Xuan (Thesis advisor) / Varman, Arul M (Committee member) / Nannenga, Brent (Committee member) / Nielsen, David R (Committee member) / Geiler-Samerotte, Kerry (Committee member) / Arizona State University (Publisher)
Created2023
157712-Thumbnail Image.png
Description
This project was completed to understand the evolution of the ability to digest wood in termite symbiotic protists. Lower termites harbor bacterial and protist symbionts which are essential to the termite ability to use wood as a nutritional source, producing glycoside hydrolases to break down the polysaccharides found in lignocellulose.

This project was completed to understand the evolution of the ability to digest wood in termite symbiotic protists. Lower termites harbor bacterial and protist symbionts which are essential to the termite ability to use wood as a nutritional source, producing glycoside hydrolases to break down the polysaccharides found in lignocellulose. Yet, only a few molecular studies have been done to confirm the protist species responsible for particular enzymes. By mining publicly available and newly generated genomic and transcriptomic data, including three transcriptomes from isolated protist cells, I identify over 200 new glycoside hydrolase sequences and compute the phylogenies of eight glycoside hydrolase families (GHFs) reported to be expressed by termite hindgut protists.

Of those families examined, the results are broadly consistent with Todaka et al. 2010, though none of the GHFs found were expressed in both termite-associated protist and non-termite-associated protist transcriptome data. This suggests that, rather than being inherited from their free-living protist ancestors, GHF genes were acquired by termite protists while within the termite gut, potentially via lateral gene transfer (LGT). For example one family, GHF10, implies a single acquisition of a bacterial xylanase into termite protists. The phylogenies from GHF5 and GHF11 each imply two distinct acquisitions in termite protist ancestors, each from bacteria. In eukaryote-dominated GHFs, GHF7 and GHF45, there are three apparent acquisitions by termite protists. Meanwhile, it appears prior reports of GHF62 in the termite gut may have been misidentified GHF43 sequences. GHF43 was the only GHF found to contain sequences from the protists not found in the termite gut. These findings generally all support the possibility termite-associated protists adapted to a lignocellulosic diet after colonization of the termite hindgut. Nonetheless, the poor resolution of GHF phylogeny and limited termite and protist sampling constrain interpretation.
ContributorsSanderlin, Viola (Author) / Gile, Gillian H (Thesis advisor) / Wojciechowski, Martin (Committee member) / Weiss, Taylor (Committee member) / Varman, Arul Mozhy (Committee member) / Arizona State University (Publisher)
Created2019
161493-Thumbnail Image.png
Description
Metabolic engineering of bacteria has become a viable technique as a sustainable and efficient method for the production of biochemicals. Two main goals were explored: investigating styrene tolerance genes in E. coli and engineering cyanobacteria for the high yield production of L-serine. In the first study, genes that were shown

Metabolic engineering of bacteria has become a viable technique as a sustainable and efficient method for the production of biochemicals. Two main goals were explored: investigating styrene tolerance genes in E. coli and engineering cyanobacteria for the high yield production of L-serine. In the first study, genes that were shown to be highly differentially expressed in E. coli upon styrene exposure were further investigated by testing the effects of their deletion and overexpression on styrene tolerance and growth. It was found that plsX, a gene responsible for the phospholipid formation in membranes, had the most promising results when overexpressed at 10 µM IPTG, with a relative OD600 of 706 ± 117% at 175 mg/L styrene when compared to the control plasmid at the same concentration. This gene is likely to be effective target when engineering styrene- and other aromatic-producing strains, increasing titers by reducing their cytotoxicity.In the second study, the goal is to engineer the cyanobacterium Synechococcus sp. PCC 7002 for the overproduction of L-serine. As a robust, photosynthetic bacteria, it has potential for being used in such-rich states to capture CO2 and produce industrially relevant products. In order to increase L-serine titers, a key degradation gene, ilvA, must be removed. While ilvA is responsible for degrading L-serine into pyruvate, it is also responsible for initiating the only known pathway for the production of isoleucine. Herein, we constructed a plasmid containing the native A0730 gene in order to investigate its potential to restore isoleucine production. If functional, a Synechococcus sp. PCC 7002 ΔilvA strain can then be engineered with minimal effects on growth and an expected increase in L-serine accumulation.
ContributorsAbed, Omar (Author) / Nielsen, David R (Thesis advisor) / Varman, Arul M (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2021
132166-Thumbnail Image.png
Description
Due to the wide range of health properties flavonoids possess, flavonoids are sold in health supplements to the general public. Flavonoids are also utilized in research but have a high cost due to current production techniques. This project focuses on engineering two DNA recombinants to develop new strains of Corynebacterium

Due to the wide range of health properties flavonoids possess, flavonoids are sold in health supplements to the general public. Flavonoids are also utilized in research but have a high cost due to current production techniques. This project focuses on engineering two DNA recombinants to develop new strains of Corynebacterium glutamicum that can produce flavonoids pinocembrin and naringenin. After culturing Escherichia coli colonies containing genes of interest, the genes were collected and purified by PCR reactions. The recombinant plasmid was assembled using CPEC and successfully transformed into Escherichia coli, with plans to transform Corynebacterium glutamicum to experiment and determine which recombinant can produce more pinocembrin and naringenin. Design work for other DNA recombinants, which were not the focus of this project, was also completed.
ContributorsWong, Adam (Co-author, Co-author) / Varman, Arul Mozhy (Thesis director) / Nielsen, David (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
168596-Thumbnail Image.png
Description
Lignin is a naturally abundant source of aromatic carbon but is largely underutilized inindustry because it is difficult to decompose. Recent research activity has targeted the development of a biological platform for the conversion of lignin and lignin-derived feedstock. Corynebacterium glutamicum is a standout candidate for the bacterial depolymerization and assimilation of lignin

Lignin is a naturally abundant source of aromatic carbon but is largely underutilized inindustry because it is difficult to decompose. Recent research activity has targeted the development of a biological platform for the conversion of lignin and lignin-derived feedstock. Corynebacterium glutamicum is a standout candidate for the bacterial depolymerization and assimilation of lignin because of its performance as an industrial producer of amino acids, resistance to aromatic compounds in lignin, and low extracellular protease activity. Under the current study, nine experimental strains of C. glutamicum were engineered with sequencing-confirmed plasmids to overexpress and secrete lignin-modifying enzymes with the eventual goal of using lignin as raw feed for the sustainable production of valuable chemicals. Within the study, laccase and peroxidase activity were discovered to be decreased in C. glutamicum culture media. For laccase the decrease reached statistical significance, with an activity of about 10.9 U/L observed in water but only about 7.56 U/L and 7.42 U/L in fresh and spent BHI media, respectively, despite the same amounts of enzyme being added. Hypothesized reasons for this inhibitory effect are discussed here, but further work is needed to identify causative factors and realize the potential of C. glutamicum for waste biomass valorization.
ContributorsEllis, Dylan Scott (Author) / Varman, Arul M (Thesis advisor) / Lammers, Peter J (Committee member) / Long, Timothy E (Committee member) / Arizona State University (Publisher)
Created2022