Matching Items (3)
Filtering by

Clear all filters

132473-Thumbnail Image.png
Description
The theory of frames for Hilbert spaces has become foundational in the study of wavelet analysis and has far-reaching applications in signal and image-processing. Originally, frames were first introduced in the early 1950's within the context of nonharmonic Fourier analysis by Duffin and Schaeffer. It was then in 2000, when

The theory of frames for Hilbert spaces has become foundational in the study of wavelet analysis and has far-reaching applications in signal and image-processing. Originally, frames were first introduced in the early 1950's within the context of nonharmonic Fourier analysis by Duffin and Schaeffer. It was then in 2000, when M. Frank and D. R. Larson extended the concept of frames to the setting of Hilbert C*-modules, it was in that same paper where they asked for which C*-algebras does every Hilbert C*-module admit a frame. Since then there have been a few direct answers to this question, one being that every Hilbert A-module over a C*-algebra, A, that has faithful representation into the C*-algebra of compact operators admits a frame. Another direct answer by Hanfeng Li given in 2010, is that any C*-algebra, A, such that every Hilbert C*-module admits a frame is necessarily finite dimensional. In this thesis we give an overview of the general theory of frames for Hilbert C*-modules and results answering the frame admittance property. We begin by giving an overview of the existing classical theory of frames in Hilbert spaces as well as some of the preliminary theory of Hilbert C*-modules such as Morita equivalence and certain tensor product constructions of C*-algebras. We then show how some results of frames can be extended to the case of standard frames in countably generated Hilbert C*-modules over unital C*-algebras, namely the frame decomposition property and existence of the frame transform operator. We conclude by going through some proofs/constructions that answer the question of frame admittance for certain Hilbert C*-modules.
ContributorsJaime, Arturo (Author) / Kaliszewski, Steven (Thesis director) / Spielberg, Jack (Committee member) / Aguilar, Konrad (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
187716-Thumbnail Image.png
Description
Iwasawa theory is a branch of number theory that studies the behavior of certain objects associated to a $\mathbb{Z}_p$-extension. We will focus our attention to the cyclotomic $\mathbb{Z}_p$-extensions of imaginary quadratic fields for varying primes p, and will give some conditions for when the corresponding lambda-invariants are greater than

Iwasawa theory is a branch of number theory that studies the behavior of certain objects associated to a $\mathbb{Z}_p$-extension. We will focus our attention to the cyclotomic $\mathbb{Z}_p$-extensions of imaginary quadratic fields for varying primes p, and will give some conditions for when the corresponding lambda-invariants are greater than 1.
ContributorsStokes, Christopher Mathewson (Author) / Childress, Nancy (Thesis advisor) / Sprung, Florian (Committee member) / Montaño, Johnathan (Committee member) / Paupert, Julian (Committee member) / Kaliszewski, Steven (Committee member) / Arizona State University (Publisher)
Created2023
187305-Thumbnail Image.png
Description
Let $E$ be an elliptic curve defined over a number field $K$, $p$ a rational prime, and $\Lambda(\Gamma)$ the Iwasawa module of the cyclotomic extension of $K$. A famous conjecture by Mazur states that the $p$-primary component of the Selmer group of $E$ is $\Lambda(\Gamma)$-cotorsion when $E$ has good ordinary

Let $E$ be an elliptic curve defined over a number field $K$, $p$ a rational prime, and $\Lambda(\Gamma)$ the Iwasawa module of the cyclotomic extension of $K$. A famous conjecture by Mazur states that the $p$-primary component of the Selmer group of $E$ is $\Lambda(\Gamma)$-cotorsion when $E$ has good ordinary reduction at all primes of $K$ lying over $p$. The conjecture was proven in the case that $K$ is the field of rationals by Kato, but is known to be false when $E$ has supersingular reduction type. To salvage this result, Kobayashi introduced the signed Selmer groups, which impose stronger local conditions than their classical counterparts. Part of the construction of the signed Selmer groups involves using Honda's theory of commutative formal groups to define a canonical system of points. In this paper I offer an alternate construction that appeals to the Functional Equation Lemma, and explore a possible way of generalizing this method to elliptic curves defined over $p$-adic fields by passing from formal group laws to formal modules.
ContributorsReamy, Alexander (Author) / Sprung, Florian (Thesis advisor) / Childress, Nancy (Thesis advisor) / Paupert, Julien (Committee member) / Montaño, Jonathan (Committee member) / Kaliszewski, Steven (Committee member) / Arizona State University (Publisher)
Created2023