Matching Items (5)
Filtering by

Clear all filters

150702-Thumbnail Image.png
Description
Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but potential mechanisms underlying this seemingly unique trait have not been rigorously investigated. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its

Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but potential mechanisms underlying this seemingly unique trait have not been rigorously investigated. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its layers to environmental stimuli is unknown. Identifying factors that affect CVT would be exceedingly valuable in teasing apart potential contributors to thick vaults in the Pleistocene. Four hypotheses were tested using CT scans of skulls of more than 1100 human and non-human primates. Data on total frontal, parietal, and occipital bone thickness and bone composition were collected to test the hypotheses: H1. CVT is an allometric consequence of brain or body size. H2. Thick cranial vaults are a response to long, low cranial vault shape. H3. High masticatory stress causes localized thickening of cranial vaults. H4. Activity-mediated systemic hormone levels affect CVT. Traditional comparative methods were used to identify features that covary with CVT across primates to establish behavior patterns that might correlate with thick cranial vaults. Secondly, novel experimental manipulation of a model organism, Mus musculus, was used to evaluate the relative plasticity of CVT. Finally, measures of CVT in fossil hominins were described and discussed in light of the extant comparative and experimental results. This dissertation reveals previously unknown variation among extant primates and humans and illustrates that Homo erectus is not entirely unique among primates in its CVT. The research suggests that it is very difficult to make a mouse grow a thick head, although it can be genetically programmed to have one. The project also identifies a possible hominin synapomorphy: high diploë ratios compared to non-human primates. It also found that extant humans differ from non-human primates in overall pattern of which cranial vault bones are thickest. What this project was unable to do was definitively provide an explanation for why and how Homo erectus grew thick skulls. Caution is required when using CVT as a diagnostic trait for Homo erectus, as the results presented here underscore the complexity inherent in its evolution and development.
ContributorsCopes, Lynn (Author) / Kimbel, William H. (Thesis advisor) / Schwartz, Gary T (Committee member) / Spencer, Mark A. (Committee member) / Ravosa, Matthew J. (Committee member) / Arizona State University (Publisher)
Created2012
157018-Thumbnail Image.png
Description
Body size plays a pervasive role in determining physiological and behavioral performance across animals. It is generally thought that smaller animals are limited in performance measures compared to larger animals; yet, the vast majority of animals on earth are small and evolutionary trends like miniaturization occur in every animal clade.

Body size plays a pervasive role in determining physiological and behavioral performance across animals. It is generally thought that smaller animals are limited in performance measures compared to larger animals; yet, the vast majority of animals on earth are small and evolutionary trends like miniaturization occur in every animal clade. Therefore, there must be some evolutionary advantages to being small and/or compensatory mechanisms that allow small animals to compete with larger species. In this dissertation I specifically explore the scaling of flight performance (flight metabolic rate, wing beat frequency, load-carrying capacity) and learning behaviors (visual differentiation visual Y-maze learning) across stingless bee species that vary by three orders of magnitude in body size. I also test whether eye morphology and calculated visual acuity match visual differentiation and learning abilities using honeybees and stingless bees. In order to determine what morphological and physiological factors contribute to scaling of these performance parameters I measure the scaling of head, thorax, and abdomen mass, wing size, brain size, and eye size. I find that small stingless bee species are not limited in visual learning compared to larger species, and even have some energetic advantages in flight. These insights are essential to understanding how small size evolved repeatedly in all animal clades and why it persists. Finally, I test flight performance across stingless bee species while varying temperature in accordance with thermal changes that are predicted with climate change. I find that thermal performance curves varied greatly among species, that smaller species conform closely to air temperature, and that larger bees may be better equipped to cope with rising temperatures due to more frequent exposure to high temperatures. This information may help us predict whether small or large species might fare better in future thermal climate conditions, and which body-size related traits might be expected to evolve.
ContributorsDuell, Meghan (Author) / Harrison, Jon F. (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Rutowski, Ronald (Committee member) / Wcislo, William (Committee member) / Conrad, Cheryl (Committee member) / Arizona State University (Publisher)
Created2018
154745-Thumbnail Image.png
Description
In the honey bee antennal lobe, uniglomerular projection neurons (uPNs) transiently spike to odor sensory stimuli with odor-specific response latencies, i.e., delays to first spike after odor

stimulation onset. Recent calcium imaging studies show that the spatio-temporal response profile of the activated uPNs are dynamic and changes as a result

In the honey bee antennal lobe, uniglomerular projection neurons (uPNs) transiently spike to odor sensory stimuli with odor-specific response latencies, i.e., delays to first spike after odor

stimulation onset. Recent calcium imaging studies show that the spatio-temporal response profile of the activated uPNs are dynamic and changes as a result

of associative conditioning, facilitating odor-detection of learned odors.

Moreover, odor-representation in the antennal lobe undergo reward-mediated plasticity processes that increase response delay variations

in the activated ensemble of uniglomerular projection neurons. Octopamine is necessarily involved in these plasticity processes. Yet, the cellular mechanisms are not

well understood. I hypothesize that octopamine modulates cholinergic transmission to uPNs by triggering translation

and upregulation of nicotinic receptors, which are more permeable to calcium. Consequently, this increased calcium-influx signals transcription factors that upregulate potassium

channels in the dendritic cortex of glomeruli, similar to synaptic plasticity mechanisms recently

shown in various insect species. A biophysical model of the antennal lobe circuit is developed in order to test the hypothesis that increased potassium channel expression in uPNs mediate response delays to first

spike, dynamically tuning odor-representations to facilitate odor-detection of learned odors.
ContributorsSmith, Adrian Nicholas (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Sinakevitch, Irina T. (Thesis advisor) / Smith, Brian H. (Committee member) / Arizona State University (Publisher)
Created2016
155013-Thumbnail Image.png
Description
Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral assays may also be influenced by the physiological status of non-neural organs. Therefore, toxin induced damage to non- neural organs

Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral assays may also be influenced by the physiological status of non-neural organs. Therefore, toxin induced damage to non- neural organs may contribute to behavioral modifications. Heavy metals and metalloids are persistent environmental pollutants and induce neurological deficits in multiple organisms. However, in the honey bee, an important insect pollinator, little is known about the sublethal effects of heavy metal and metalloid toxicity though they are exposed to these toxins chronically in some environments. In this thesis I investigate the sublethal effects of copper, cadmium, lead, and selenium on honey bee behavior and identify potential mechanisms mediating the behavioral modifications. I explore the honey bees’ ability to detect these toxins, their sensory perception of sucrose following toxin exposure, and the effects of toxin ingestion on performance during learning and memory tasks. The effects depend on the specific metal. Honey bees detect and reject copper containing solutions, but readily consume those contaminated with cadmium and lead. And, exposure to lead may alter the sensory perception of sucrose. I also demonstrate that acute selenium exposure impairs learning and long-term memory formation or recall. Localizing selenium accumulation following chronic exposure reveals that damage to non-neural organs and peripheral sensory structures is more likely than direct neurotoxicity. Probable mechanisms include gut microbiome alterations, gut lining

damage, immune system activation, impaired protein function, or aberrant DNA methylation. In the case of DNA methylation, I demonstrate that inhibiting DNA methylation dynamics can impair long-term memory formation, while the nurse-to- forager transition is not altered. These experiments could serve as the bases for and reference groups of studies testing the effects of metal or metalloid toxicity on DNA methylation. Each potential mechanism provides an avenue for investigating how neural function is influenced by the physiological status of non-neural organs. And from an ecological perspective, my results highlight the need for environmental policy to consider sublethal effects in determining safe environmental toxin loads for honey bees and other insect pollinators.
ContributorsBurden, Christina Marie (Author) / Amdam, Gro (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Gallitano-Mendel, Amelia (Committee member) / Harrison, Jon (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2016
155638-Thumbnail Image.png
Description
Animals must learn to ignore stimuli that are irrelevant to survival, which is a process referred to as ‘latent inhibition’. This process has been shown to be genetically heritable (Latshaw JS, Mazade R, Sinakevitch I, Mustard JA, Gadau J, Smith BH (submitted)). The locus containing the AmTYR1 gene has been

Animals must learn to ignore stimuli that are irrelevant to survival, which is a process referred to as ‘latent inhibition’. This process has been shown to be genetically heritable (Latshaw JS, Mazade R, Sinakevitch I, Mustard JA, Gadau J, Smith BH (submitted)). The locus containing the AmTYR1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. The Smith lab has been able to show a correlation between learning and the AmTYR1 receptor gene through pharmacological inhibition of the receptor. In order to further confirm this finding, experiments were designed to test how honey bees learn with this receptor knocked out. Here this G-protein coupled receptor for the biogenic amine tyramine is implemented as an important factor underlying latent inhibition in honey bees. It is shown that double-stranded RNA (dsRNA) and Dicer-substrate small interfering RNA (dsiRNA) that are targeted to disrupt the tyramine receptors specifically affects latent inhibition but not excitatory associative conditioning. The results therefore identify a distinct reinforcement pathway for latent inhibition in insects.
ContributorsPetersen, Mary Margaret (Author) / Smith, Brian H. (Thesis advisor) / Wang, Ying (Committee member) / Neisewander, Janet (Committee member) / Sinakavich, Irina (Committee member) / Arizona State University (Publisher)
Created2017