Matching Items (5)
Filtering by

Clear all filters

Description
Peripheral Vascular Disease (PVD) is a debilitating chronic disease of the lower extremities particularly affecting older adults and diabetics. It results in reduction of the blood flow to peripheral tissue and sometimes causing tissue damage such that PVD patients suffer from pain in the lower legs, thigh and buttocks after

Peripheral Vascular Disease (PVD) is a debilitating chronic disease of the lower extremities particularly affecting older adults and diabetics. It results in reduction of the blood flow to peripheral tissue and sometimes causing tissue damage such that PVD patients suffer from pain in the lower legs, thigh and buttocks after activities. Electrical neurostimulation based on the "Gate Theory of Pain" is a known to way to reduce pain but current devices to do this are bulky and not well suited to implantation in peripheral tissues. There is also an increased risk associated with surgery which limits the use of these devices. This research has designed and constructed wireless ultrasound powered microstimulators that are much smaller and injectable and so involve less implantation trauma. These devices are small enough to fit through an 18 gauge syringe needle increasing their potential for clinical use. These piezoelectric microdevices convert mechanical energy into electrical energy that then is used to block pain. The design and performance of these miniaturized devices was modeled by computer while constructed devices were evaluated in animal experiments. The devices are capable of producing 500ms pulses with an intensity of 2 mA into a 2 kilo-ohms load. Using the rat as an animal model, a series of experiments were conducted to evaluate the in-vivo performance of the devices.
ContributorsZong, Xi (Author) / Towe, Bruce (Thesis advisor) / Kleim, Jeffrey (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2014
135233-Thumbnail Image.png
Description
As the rates of anxiety in adults rapidly swell, new and creative treatment methods become increasingly relevant. Individuals with an anxiety disorder may experience challenging symptoms that interfere with daily activities and impede academic and social success. The purpose of this project is to design and engineer a portable heart

As the rates of anxiety in adults rapidly swell, new and creative treatment methods become increasingly relevant. Individuals with an anxiety disorder may experience challenging symptoms that interfere with daily activities and impede academic and social success. The purpose of this project is to design and engineer a portable heart rate monitor that communicates with an iOS mobile application for use by individuals suffering from anxiety or panic disorders. The proposed device captures the innovation of combining biosensor feedback with new, creative therapy methods on a convenient iOS application. The device is implemented as an Arduino Uno which translates radial pulse information onto an LCD screen from a wristband. Additionally, the iOS portion uses a slow expanding and collapsing animation to guide the user through a calming breathing exercise while displaying their pulse in beats per minute. The user's awareness or his or her ability to control one's own physiological state supports and facilitates an additional form of innovative therapy. The current design of the iOS app uses a random-number generator between 40 to 125 to imitate a realistic heart rate. If the value is less than 60 or greater than 105, the number is printed in red; otherwise the heart rate is displayed in green. Future versions of this device incorporate bluetooth capabilities and potentially additional synchronous methods of therapy. The information presented in this research provides an excellent example of the integrations of new mobile technology and healthcare.
ContributorsTadayon, Ramesh (Author) / Muthuswamy, Jit (Thesis director) / Towe, Bruce (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135041-Thumbnail Image.png
Description
The advent of big data analytics tools and frameworks has allowed for a plethora of new approaches to research and analysis, making data sets that were previously too large or complex more accessible and providing methods to collect, store, and investigate non-traditional data. These tools are starting to be applied

The advent of big data analytics tools and frameworks has allowed for a plethora of new approaches to research and analysis, making data sets that were previously too large or complex more accessible and providing methods to collect, store, and investigate non-traditional data. These tools are starting to be applied in more creative ways, and are being used to improve upon traditional computation methods through distributed computing. Statistical analysis of expression quantitative trait loci (eQTL) data has classically been performed using the open source tool PLINK - which runs on high performance computing (HPC) systems. However, progress has been made in running the statistical analysis in the ecosystem of the big data framework Hadoop, resulting in decreased run time, reduced storage footprint, reduced job micromanagement and increased data accessibility. Now that the data can be more readily manipulated, analyzed and accessed, there are opportunities to use the modularity and power of Hadoop to further process the data. This project focuses on adding a component to the data pipeline that will perform graph analysis on the data. This will provide more insight into the relation between various genetic differences in individuals with breast cancer, and the resulting variation - if any - in gene expression. Further, the investigation will look to see if there is anything to be garnered from a perspective shift; applying tools used in classical networking contexts (such as the Internet) to genetically derived networks.
ContributorsRandall, Jacob Christopher (Author) / Buetow, Kenneth (Thesis director) / Meuth, Ryan (Committee member) / Almalih, Sara (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Nerve endings are particularly difficult to target during peripheral nerve block (PNB) procedures, so ultrasound-guided needles are of immense importance to guarantee safe and efficient delivery of the anesthetic to the target nerve. Despite significant progress in needle visualization with ultrasound imaging, there are still several factors that lead to

Nerve endings are particularly difficult to target during peripheral nerve block (PNB) procedures, so ultrasound-guided needles are of immense importance to guarantee safe and efficient delivery of the anesthetic to the target nerve. Despite significant progress in needle visualization with ultrasound imaging, there are still several factors that lead to poor needle visibility, the main factor being insertion angle. Introducing cavities and holes in the needle at specific intervals through pitting corrosion may alter the ultrasonic feedback from the sensor, thereby resulting in improved clarity of the reconstructed image. The purpose of this experiment is to investigate the effectiveness of two novel pitting designs on the needle’s visibility under ultrasound. Two different designs and two depths of cut are tested in a 22 factorial that is blocked by insertion angle: a uniform and a non-uniform design. Needles were cut using a Plain Jane and Igor laser cutter and imaged using a GE Logig e BT12 ultrasound imaging machine. Images were compared visually and objectively by using a tool in Photoshop to calculate the luminosity of the needle. Two videos were also taken capturing the difficulty of imaging surgical needles. Results showed that pitting had a major impact on needle visibility at 30° and a marginal impact at 0°. The videos supported these results as it was considerably more difficult to locate the control needle than the experimental needle. This suggests the probe must be in a specific plane with the control needle for it to be visible while the experimental needle is much more lenient. Results from the two depths of cuts showed similar results in that the designs which were cut twice were more visible than their counterparts at 30°. The study showed that pitting has positive effects on needle visibility; it improves visibility by increasing the luminescence of the needle and by decreasing its sensitivity to probe position.
ContributorsTze, David (Author) / Muthuswamy, Jit (Thesis director) / Towe, Bruce (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

With the recent rise in opioid overdose and death1<br/><br/>, chronic opioid therapy (COT) programs using<br/>Center of Disease Control (CDC) guidelines have been implemented across the United States8<br/>.<br/>Primary care clinicians at Mayo Clinic initiated a COT program in September of 2017, during the<br/>use of Cerner Electronic Health Record (EHR) system. Study

With the recent rise in opioid overdose and death1<br/><br/>, chronic opioid therapy (COT) programs using<br/>Center of Disease Control (CDC) guidelines have been implemented across the United States8<br/>.<br/>Primary care clinicians at Mayo Clinic initiated a COT program in September of 2017, during the<br/>use of Cerner Electronic Health Record (EHR) system. Study metrics included provider<br/>satisfaction and perceptions regarding opioid prescription. Mayo Clinic transitioned its EHR<br/>system from Cerner to Epic in October 2018. This study aims to understand if provider perceptions<br/>about COT changed after the EHR transition and the reasons underlying those perceptions.

ContributorsPonnapalli, Sravya (Author) / Murcko, Anita (Thesis director) / Wallace, Mark (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05