Matching Items (3)
Filtering by

Clear all filters

154106-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a significant public health concern in the U.S., where approximately 1.7 million Americans sustain a TBI annually, an estimated 52,000 of which lead to death. Almost half (43%) of all TBI patients report experiencing long-term cognitive and/or motor dysfunction. These long-term deficits are largely due

Traumatic brain injury (TBI) is a significant public health concern in the U.S., where approximately 1.7 million Americans sustain a TBI annually, an estimated 52,000 of which lead to death. Almost half (43%) of all TBI patients report experiencing long-term cognitive and/or motor dysfunction. These long-term deficits are largely due to the expansive biochemical injury that underlies the mechanical injury traditionally associated with TBI. Despite this, there are currently no clinically available therapies that directly address these underlying pathologies. Preclinical studies have looked at stem cell transplantation as a means to mitigate the effects of the biochemical injury with moderate success; however, transplants suffer very low retention and engraftment rates (2-4%). Therefore, transplants need better tools to dynamically respond to the injury microenvironment.

One approach to develop new tools for stem cell transplants may be to look towards the endogenous repair response for inspiration. Specifically, activated cell types surrounding the injury secrete the chemokine stromal cell-derived factor-1α (SDF-1α), which has been shown to play a critical role in recruiting endogenous neural progenitor/stem cells (NPSCs) to the site of injury. Therefore, it was hypothesized that improving NPSC response to SDF-1α may be a viable mechanism for improving NPSC transplant retention and migration into the surrounding host tissue. To this end, work presented here has 1. identified critical extracellular signals that mediate the NPSC response to SDF-1α, 2. incorporated these findings into the development of a transplantation platform that increases NPSC responsiveness to SDF-1α and 3. observed increased NPSC responsiveness to local exogenous SDF-1α signaling following transplantation within our novel system. Future work will include studies investigating NSPC response to endogenous, injury-induced SDF-1α and the application of this work to understanding differences between stem cell sources and their implications in cell therapies.
ContributorsAddington, Caroline (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Kleim, Jeffrey A (Committee member) / Caplan, Michael R (Committee member) / Lifshitz, Jonathan (Committee member) / Massia, Stephen P (Committee member) / Arizona State University (Publisher)
Created2015
158067-Thumbnail Image.png
Description
Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams, gels, colloids, polymers, and biological substances. Although soft materials already have numerous applications with each of their unique characteristics, integrating

Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams, gels, colloids, polymers, and biological substances. Although soft materials already have numerous applications with each of their unique characteristics, integrating materials to achieve complementary functionalities is still a growing need for designing advanced applications of complex requirements. This dissertation explores a unique approach of utilizing intermolecular interactions to accomplish not only the multifunctionality from combined materials but also their tailored properties designed for specific tasks. In this work, multifunctional soft materials are explored in two particular directions, ionic liquids (ILs)-based mixtures and interpenetrating polymer network (IPN).

First, ILs-based mixtures were studied to develop liquid electrolytes for molecular electronic transducers (MET) in planetary exploration. For space missions, it is challenging to operate any liquid electrolytes in an extremely low-temperature environment. By tuning intermolecular interactions, the results demonstrated a facile method that has successfully overcome the thermal and transport barriers of ILs-based mixtures at extremely low temperatures. Incorporation of both aqueous and organic solvents in ILs-based electrolyte systems with varying types of intermolecular interactions are investigated, respectively, to yield optimized material properties supporting not only MET sensors but also other electrochemical devices with iodide/triiodide redox couple targeting low temperatures.

Second, an environmentally responsive hydrogel was synthesized via interpenetrating two crosslinked polymer networks. The intermolecular interactions facilitated by such an IPN structure enables not only an upper critical solution temperature (UCST) transition but also a mechanical enhancement of the hydrogel. The incorporation of functional units validates a positive swelling response to visible light and also further improves the mechanical properties. This studied IPN system can serve as a promising route in developing “smart” hydrogels utilizing visible light as a simple, inexpensive, and remotely controllable stimulus.

Over two directions across from ILs to polymeric networks, this work demonstrates an effective strategy of utilizing intermolecular interactions to not only develop multifunctional soft materials for advanced applications but also discover new properties beyond their original boundaries.
ContributorsXu, Yifei (Author) / Dai, Lenore L. (Thesis advisor) / Forzani, Erica (Committee member) / Holloway, Julianne (Committee member) / Jiang, Hanqing (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2020
132721-Thumbnail Image.png
Description
Tissue engineering is an emerging field focused on the repair, replacement, and regeneration of damaged tissue. Engineered tissue consists of three factors: cells, biomolecular signals, and a scaffold. Cell-free scaffolds present a unique opportunity to develop highly specific microenvironments with tunable properties. Norbornene-functionalized hyaluronic acid (NorHA) hydrogels provide spatial control

Tissue engineering is an emerging field focused on the repair, replacement, and regeneration of damaged tissue. Engineered tissue consists of three factors: cells, biomolecular signals, and a scaffold. Cell-free scaffolds present a unique opportunity to develop highly specific microenvironments with tunable properties. Norbornene-functionalized hyaluronic acid (NorHA) hydrogels provide spatial control over biomolecule binding through a photopolymerization process. With this, biomimetic gradients can be produced to model a variety of tissue interfaces. To produce these patterns, a gradient mechanism was developed to function in tandem with a syringe pump. A conversion equation was derived to calculate a panel speed from the volumetric flow rate setting on the pump. Seven speeds were used to produce fluorophore gradients on the surface of NorHA hydrogels to assess changes in the length and slope of the gradient. The results indicated a strong positive linear correlation between the speed of the panel and the length of the gradient as well as a strong negative correlation between the speed of the panel and the slope of the gradient. Additionally, the mechanism was able to successfully produce several other types of gradients including multiregional, dual, and triregional.
ContributorsSogge, Amber (Author) / Holloway, Julianne (Thesis director) / Stabenfeldt, Sarah (Committee member) / Fumasi, Fallon (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05