Matching Items (4)
Filtering by

Clear all filters

157389-Thumbnail Image.png
Description
In these times of increasing industrialization, there arises a need for effective and energy efficient heat transfer/heat exchange devices. The focus nowadays is on identifying various methods and techniques which can aid the process of developing energy efficient devices. One of the most common heat transfer devices is a heat

In these times of increasing industrialization, there arises a need for effective and energy efficient heat transfer/heat exchange devices. The focus nowadays is on identifying various methods and techniques which can aid the process of developing energy efficient devices. One of the most common heat transfer devices is a heat exchanger. Heat exchangers are an essential commodity to any industry and their efficiency can play an important role in making industries energy efficient and reduce the energy losses in the devices, in turn decreasing energy inputs to run the industry.

One of the ways in which we can improve the efficiency of heat exchangers is by applying ultrasonic energy to a heat exchanger. This research explores the possibility of introducing the external input of ultrasonic energy to increase the efficiency of the heat exchanger. This increase in efficiency can be estimated by calculating the parameters important for the characterization of a heat exchanger, which are effectiveness (ε) and overall heat transfer coefficient (U). These parameters are calculated for both the non-ultrasound and ultrasound conditions in the heat exchanger.

This a preliminary study of ultrasound and its effect on a conventional shell-and-coil heat exchanger. From the data obtained it can be inferred that the increase in effectiveness and overall heat transfer coefficient upon the application of ultrasound is 1% and 6.22% respectively.
ContributorsAnnam, Roshan Sameer (Author) / Phelan, Patrick (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2019
171517-Thumbnail Image.png
Description
The colloidal solutions of nanoparticles have been seen as promising solutions forheat transfer enhancement. Additionally, there has been an accelerated study on the effects of ultrasound on heat transfer enhancement in recent years. A few authors have studied the combined impact of Al2O3 nanofluids and ultrasound on mini channels. This study focused on

The colloidal solutions of nanoparticles have been seen as promising solutions forheat transfer enhancement. Additionally, there has been an accelerated study on the effects of ultrasound on heat transfer enhancement in recent years. A few authors have studied the combined impact of Al2O3 nanofluids and ultrasound on mini channels. This study focused on the combined effects of Al2O3 nanofluids and ultrasound on heat transfer enhancement in a circular mini channel heat sink. Two concentrations of Al2O3-water nanofluids, i.e., 0.5% and 1%, were used for the experiments in addition to two heat input conditions, namely 40 W and 50 W providing a constant heat flux of 25000 W m-2 and 31250 W m-2 respectively. The effect on the nanofluids using 5 W ultrasound was analyzed. Experimental observations show that the usage of ultrasound increased the heat transfer coefficient. The heat transfer coefficient also increased with increasing nanoparticle concentration and high heat flux. The average heat transfer coefficient enhancement for 0.5% and 1% nanofluid due to increased heat flux in the absence of ultrasound was 12.4% and 9% respectively. At a constant heat input of 40 W, the induction of ultrasound enhanced the heat transfer coefficient by 22.8% and 23.9% for 0.5% and 1% nanofluid respectively. Similarly, for a constant heat input of 50 W, the usage of ultrasound enhanced the heat transfer coefficient by 19.8% and 22.9% for 0.5% and 1% nanofluid respectively Also, interesting findings are reported with low heat input with ultrasound vs. high heat input without ultrasound (i.e., 40 W with US vs. 50 W without US). The heat transfer coefficient and Nusselt number for 0.5% and 1% concentrations was enhanced by 9.2% and 13.6%, respectively. Furthermore, for fixed heat input powers of 40 W and 50 W, increasing the concentration from 0.5% to 1% along with ultrasound yielded an average enhancement in Nu of 38.3% and 32.4% respectively
ContributorsMastoi, Faisal Ali (Author) / Phelan, Patrick E (Thesis advisor) / Milcarek, Ryan (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2022
161898-Thumbnail Image.png
Description
Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used

Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used adsorbents namely zeolite 13X, activated alumina and silica gel is investigated. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant overall input power of 20 and 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. Duplicate experiments were performed at three nominal frequencies of 28, 40 and 80 kHz to observe the influence of frequency on regeneration dynamics. Regarding moisture removal, application of ultrasound results in higher desorption rate compared to a non-ultrasound process. A nonlinear inverse proportionality was observed between the effectiveness of ultrasound and the frequency at which it is applied. Based on the variation of desorption dynamics with ultrasonic power and frequency, three mechanisms of reduced adsorbate adsorption potential, increased adsorbate surface energy and enhanced mass diffusion are proposed. Two analytical models that describe the desorption process were developed based on the experimental data from which novel efficiency metrics were proposed, which can be employed to justify incorporating ultrasound in regeneration and drying processes.
ContributorsDaghooghi Mobarakeh, Hooman (Author) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Wang, Robert (Committee member) / Calhoun, Ronald (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2021
161465-Thumbnail Image.png
Description
The phase change process of freezing water is an important application in several fields such as ice making, food freezing technologies, pharmaceuticals etc. Due to the widespread usage of ice-related products, process improvements in this technology can potentially lead to substantial energy savings. After studying the freezing process of water,

The phase change process of freezing water is an important application in several fields such as ice making, food freezing technologies, pharmaceuticals etc. Due to the widespread usage of ice-related products, process improvements in this technology can potentially lead to substantial energy savings. After studying the freezing process of water, the supercooling phenomenon was found to occur which showed a negative effect. Therefore, ultrasound was proposed as a technique to reduce the supercooling effect and improve the heat transfer rate. An experimental study was conducted to analyze the energy expenditures in the freezing process with and without the application of ultrasound. After a set of preliminary experiments, an intermittent application of ultrasound at 10W & 3.5W power levels were found to be more effective than constant-power application, and were explored in further detail. The supercooling phenomenon was thoroughly studied through iterative experiments. It was also found that the application of ultrasound during the freezing process led to the formation of shard-like ice crystals. From the intermittent ultrasound experiments performed at 10W and 3.5W power levels, percentage energy enhancements relative to no ultrasound of 8.9% ± 12.4% and 11.9% ± 24.6% were observed, respectively.
ContributorsSubramanian, Varun (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2021