Matching Items (4)
Filtering by

Clear all filters

171479-Thumbnail Image.png
Description
The world today needs novel solutions to address current challenges in areas spanning areas from sustainable manufacturing to healthcare, and biotechnology offers the potential to help address some of these issues. One tool that offers opportunities across multiple industries is the use of nonribosomal peptide synthases (NRPSs). These are modular

The world today needs novel solutions to address current challenges in areas spanning areas from sustainable manufacturing to healthcare, and biotechnology offers the potential to help address some of these issues. One tool that offers opportunities across multiple industries is the use of nonribosomal peptide synthases (NRPSs). These are modular biological factories with individualized subunits that function in concert to create novel peptides.One element at the heart of environmental health debates today is plastics. Biodegradable alternatives for petroleum-based plastics is a necessity. One NRPS, cyanophycin synthetase (CphA), can produce cyanophycin grana protein (CGP), a polymer composed of a poly-aspartic acid backbone with arginine side chains. The aspartic backbone has the potential to replace synthetic polyacrylate, although current production costs are prohibitive. In Chapter 2, a CphA variant from Tatumella morbirosei is characterized, that produces up to 3x more CGP than other known variants, and shows high iCGP specificity in both flask and bioreactor trials. Another CphA variant, this one from Acinetobacter baylyi, underwent rational protein design to create novel mutants. One, G217K, is 34% more productive than the wild type, while G163K produces a CGP with shorter chain lengths. The current structure refined from 4.4Å to 3.5Å. Another exciting application of NRPSs is in healthcare. They can be used to generate novel peptides such as complex antibiotics. A recently discovered iterative polyketide synthase (IPTK), dubbed AlnB, produces an antibiotic called allenomycin. One of the modular subunits, a dehydratase named AlnB_DH, was crystallized to 2.45Å. Several mutations were created in multiple active site residues to help understand the functional mechanism of AlnB_DH. A preliminary holoenzyme AlnB structure at 3.8Å was generated although the large disorganized regions demonstrated an incomplete structure. It was found that chain length is the primary factor in driving dehydratase action within AlnB_DH, which helps lend understanding to this module.
ContributorsSwain, Kyle (Author) / Nannenga, Brent (Thesis advisor) / Nielsen, David (Committee member) / Mills, Jeremy (Committee member) / Seo, Eileen (Committee member) / Acharya, Abhinav (Committee member) / Arizona State University (Publisher)
Created2022
171698-Thumbnail Image.png
Description
The current use of non-renewable fossil fuels for industry poses a threat for future generations. Thus, a pivot to renewable sources of energy must be made to secure a sustainable future. One potential option is the utilization of metabolically engineered bacteria to produce value-added chemicals during fermentation. Currently, numerous strains

The current use of non-renewable fossil fuels for industry poses a threat for future generations. Thus, a pivot to renewable sources of energy must be made to secure a sustainable future. One potential option is the utilization of metabolically engineered bacteria to produce value-added chemicals during fermentation. Currently, numerous strains of metabolically engineered Escherichia coli have shown great capacity to specialize in the production of high titers of a desired chemical. These metabolic systems, however, are constrained by the biological limits of E. coli itself. During fermentation, E. coli grows to less than one twentieth of the density that aerobically growing cultures can reach. I hypothesized that this decrease in growth during fermentation is due to cellular stress associated with fermentative growth, likely caused by stress related genes. These genes, including toxin-antitoxin (TA) systems and the rpoS mediated general stress response, may have an impact on fermentative growth constraints. Through transcriptional analysis, I identified that the genes pspC and relE are highly expressed in fermenting strains of both wild type and metabolically engineered E. coli. Fermentation of toxin gene knockouts of E. coli BW25113 revealed their potential impacts on E. coli fermentation. The inactivation of ydcB, lar, relE, hipA, yjfE, chpA, ygiU, ygjN, ygfX, yeeV, yjdO, yjgK and ydcX did not lead to significant changes in cell growth when tested using sealed tubes under microaerobic conditions. In contrast, inactivation of pspC, yafQ, yhaV, yfjG and yoeB increased cell growth after 12 hours while inactivation yncN significantly arrested cell growth in both tube and fermentation tests, thus proving these toxins’ roles in fermentative growth. Moreover, inactivation of rpoS also significantly hindered the ability of E. coli to ferment, suggesting its important role in E. coli fermentation
ContributorsHernandez, Michaella (Author) / Wang, Xuan (Thesis advisor) / Nielsen, David (Committee member) / Varman, Arul (Committee member) / Arizona State University (Publisher)
Created2022
193673-Thumbnail Image.png
Description
Phenolic polymers like polyphenols and polyphenylenes have several industrial applications including electrical insulation, specialty membranes, and packings but are typically synthesized under harsh reaction conditions and require hazardous chemicals like formaldehyde. Hydroxycinnamic acids, such as p-coumaric acid (p-CA), are aromatic derivatives of lignin hydrolysates, an underutilized and promising renewable feedstock

Phenolic polymers like polyphenols and polyphenylenes have several industrial applications including electrical insulation, specialty membranes, and packings but are typically synthesized under harsh reaction conditions and require hazardous chemicals like formaldehyde. Hydroxycinnamic acids, such as p-coumaric acid (p-CA), are aromatic derivatives of lignin hydrolysates, an underutilized and promising renewable feedstock for production of phenolics and phenolic polymers. Recently a strain of Corynebacterium glutamicum has been created by the Joint BioEnergy Institute (JBEI) which expresses phenolic acid decarboxylase (PAD), an enzyme which catalyzes the reaction of p-CA to 4-vinylphenol (4-VP). Further, a deletion of the phdA gene prevents assimilation of p-CA, thereby increasing 4-VP yield. 4-VP is a substituted phenol which can be polymerized to poly(4-vinylphenol) (PVP) in the presence of ligninolytic enzymes like laccases or peroxidases. This work explores in situ polymerization of 4-VP to PVP by supplementing ligninolytic enzymes during fermentation. Cultured in the presence of p-CA, the engineered C. glutamicum strain achieved a maximum 4-VP yield of 45.2%, 57.9%, and 34.7% when fed 2, 5, and 10 g/L p-CA, respectively. Low yield can be attributed to photodegradation of 4-VP and accumulation of the native laccase present in C. glutamicum which may form only dimers and trimers. To further investigate carbon utilization in the cell, the engineered strain was plasmid cured thus removing the PAD enzyme and fermentations for 13C pathway analysis was performed. Polymerization experiments were performed and the polymer was characterized using GPC.
ContributorsMcKeown, Haley Nicole (Author) / Varman, Arul M (Thesis advisor) / Nannenga, Brent (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2024
156597-Thumbnail Image.png
Description
Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, bioproduct titer toxicity, and toxic chemicals associated with chemical

Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, bioproduct titer toxicity, and toxic chemicals associated with chemical pretreatments are at the center of the bottlenecks limiting further commercialization of lignocellulose conversion. Genetic and metabolic engineering has allowed researchers to manipulate microorganisms to overcome some of these challenges, but new innovative approaches are needed to make the process more commercially viable. Transport proteins represent an underexplored target in genetic engineering that can potentially help to control the input of lignocellulosic substrate and output of products/toxins in microbial biocatalysts. In this work, I characterize and explore the use of transport systems to increase substrate utilization, conserve energy, increase tolerance, and enhance biocatalyst performance.
ContributorsKurgan, Gavin (Author) / Wang, Xuan (Thesis advisor) / Nielsen, David (Committee member) / Misra, Rajeev (Committee member) / Nannenga, Brent (Committee member) / Arizona State University (Publisher)
Created2018