Matching Items (10)
Filtering by

Clear all filters

Description
Myocardial infarction (MI) remains the leading cause of mortality and morbidity in the U.S., accounting for nearly 140,000 deaths per year. Heart transplantation and implantation of mechanical assist devices are the options of last resort for intractable heart failure, but these are limited by lack of organ donors and potential

Myocardial infarction (MI) remains the leading cause of mortality and morbidity in the U.S., accounting for nearly 140,000 deaths per year. Heart transplantation and implantation of mechanical assist devices are the options of last resort for intractable heart failure, but these are limited by lack of organ donors and potential surgical complications. In this regard, there is an urgent need for developing new effective therapeutic strategies to induce regeneration and restore the loss contractility of infarcted myocardium. Over the past decades, regenerative medicine has emerged as a promising strategy to develop scaffold-free cell therapies and scaffold-based cardiac patches as potential approaches for MI treatment. Despite the progress, there are still critical shortcomings associated with these approaches regarding low cell retention, lack of global cardiomyocytes (CMs) synchronicity, as well as poor maturation and engraftment of the transplanted cells within the native myocardium. The overarching objective of this dissertation was to develop two classes of nanoengineered cardiac patches and scaffold-free microtissues with superior electrical, structural, and biological characteristics to address the limitations of previously developed tissue models. An integrated strategy, based on micro- and nanoscale technologies, was utilized to fabricate the proposed tissue models using functionalized gold nanomaterials (GNMs). Furthermore, comprehensive mechanistic studies were carried out to assess the influence of conductive GNMs on the electrophysiology and maturity of the engineered cardiac tissues. Specifically, the role of mechanical stiffness and nano-scale topographies of the scaffold, due to the incorporation of GNMs, on cardiac cells phenotype, contractility, and excitability were dissected from the scaffold’s electrical conductivity. In addition, the influence of GNMs on conduction velocity of CMs was investigated in both coupled and uncoupled gap junctions using microelectrode array technology. Overall, the key contributions of this work were to generate new classes of electrically conductive cardiac patches and scaffold-free microtissues and to mechanistically investigate the influence of conductive GNMs on maturation and electrophysiology of the engineered tissues.
ContributorsNavaei, Ali (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Migrino, Raymond Q. (Committee member) / Stabenfeldt, Sarah (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2018
133170-Thumbnail Image.png
Description
With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still

With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still have some way to go before they are viable systems for drug delivery. One of the main reasons for this is a lack of fabrication processes and systems which produce monodisperse particles while also being feasible for industrialization [10]. This honors thesis investigates various microparticle fabrication techniques \u2014 two using mechanical agitation and one using fluid dynamics \u2014 with the long term goal of incorporating norepinephrine and adenosine into the particles for metabolic stimulatory purposes. It was found that mechanical agitation processes lead to large values for dispersity and the polydispersity index while fluid dynamics methods have the potential to create more uniform and predictable outcomes. The research concludes by needing further investigation into methods and prototype systems involving fluid dynamics methods; however, these systems yield promising results for fabricating monodisperse particles which have the potential to encapsulate a wide variety of therapeutic drugs.
ContributorsRiley, Levi Louis (Author) / Vernon, Brent (Thesis director) / VanAuker, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
148276-Thumbnail Image.png
Description

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo from the bodily environment, and reduction in systemic side effects. This experiment used a single emulsion technique to encapsulate L-tyrosine in PLGA microparticles and UV spectrophotometry to analyze the drug release over a period of one week. The release assay found that for the tested samples, the released amount is distinct initially, but is about the same after 4 days, and they generally follow the same normalized percent released pattern. The experiment could continue with testing more samples, test the same samples for a longer duration, and look into higher w/w concentrations such as 20% or 50%.

ContributorsSeo, Jinpyo (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and time effectiveness. Theoretical data for the time to 60% drug release and the slope and intercept of the log-log plot were collected and subjected to statistical analysis in JMP. Since the scope of this project focuses on microparticle surface degradation drug release with no drug diffusion, the characteristic variables relating to the slope (n = diffusional release exponent) and the intercept (k = kinetic constant) do not directly apply to the distribution model within the scope of the research. However, these variables are useful for analysis when the Mathcad template is applied to other types of drug release models.

ContributorsHan, Priscilla (Author) / Vernon, Brent (Thesis director) / Nickle, Jacob (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168323-Thumbnail Image.png
Description
Transorbital surgery has gained recent notoriety due to its incorporation into endoscopic skull base surgery. The body of published literature on the field is cadaveric and observation. The pre-clinical studies are focused on the use of the endoscope only. Furthermore the methodology utilised in the published literature is inconsistent and

Transorbital surgery has gained recent notoriety due to its incorporation into endoscopic skull base surgery. The body of published literature on the field is cadaveric and observation. The pre-clinical studies are focused on the use of the endoscope only. Furthermore the methodology utilised in the published literature is inconsistent and does not embody the optimal principles of scientific experimentation. This body of work evaluates a minimally invasive novel surgical corridor - the transorbital approach - its validity in neurosurgical practice, as well as both qualitatively and quantitatively assessing available technological advances in a robust experimental fashion. While the endoscope is an established means of visualisation used in clinical transorbital surgery, the microscope has never been assessed with respect to the transorbital approach. This question is investigated here and the anatomical and surgical benefits and limitations of microscopic visualisation demonstrated. The comparative studies provide increased knowledge on specifics pertinent to neurosurgeons and other skull base specialists when planning pre-operatively, such as pathology location, involved anatomical structures, instrument maneuvrability and the advantages and disadvantages of the distinct visualisation technologies. This is all with the intention of selecting the most suitable surgical approach and technology, specific to the patient, pathology and anatomy, so as to perform the best surgical procedure. The research findings illustrated in this body of work are diverse, reproducible and applicable. The transorbital surgical corridor has substantive potential for access to the anterior cranial fossa and specific surgical target structures. The neuroquantitative metrics investigated confirm the utility and benefits specific to the respective visualisation technologies i.e. the endoscope and microscope. The most appropriate setting wherein the approach should be used is also discussed. The transorbital corridor has impressive potential, can utilise all available technological advances, promotes multi-disciplinary co-operation and learning amongst clinicians and ultimately, is a means of improving operative patient care.
ContributorsHoulihan, Lena Mary (Author) / Preul, Mark C. (Thesis advisor) / Vernon, Brent (Thesis advisor) / O' Sullivan, Michael G.J. (Committee member) / Lawton, Michael T. (Committee member) / Santarelli, Griffin (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2021
Description
According to the World Health Organization, cancer is one of the leading causes of death around the world. Although early diagnostics using biomarkers and improved treatments with targeted therapy have reduced the rate of cancer related mortalities, there remain many unknowns regarding the contributions of the tumor microenvironment to cancer

According to the World Health Organization, cancer is one of the leading causes of death around the world. Although early diagnostics using biomarkers and improved treatments with targeted therapy have reduced the rate of cancer related mortalities, there remain many unknowns regarding the contributions of the tumor microenvironment to cancer progression and therapeutic resistance. The tumor microenvironment plays a significant role by manipulating the progression of cancer cells through biochemical and biophysical signals from the surrounding stromal cells along with the extracellular matrix. As such, there is a critical need to understand how the tumor microenvironment influences the molecular mechanisms underlying cancer metastasis to facilitate the discovery of better therapies. This thesis described the development of microfluidic technologies to study the interplay of cancer cells with their surrounding microenvironment. The microfluidic model was used to assess how exposure to chemoattractant, epidermal growth factor (EGF), impacted 3D breast cancer cell invasion and enhanced cell motility speed was noted in the presence of EGF validating physiological cell behavior. Additionally, breast cancer and patient-derived cancer-associated fibroblast (CAF) cells were co-cultured to study cell-cell crosstalk and how it affected cancer invasion. GPNMB was identified as a novel gene of interest and it was shown that CAFs enhanced breast cancer invasion by up-regulating the expression of GPNMB on breast cancer cells resulting in increased migration speed. Lastly, this thesis described the design, biological validation, and use of this microfluidic platform as a new in vitro 3D organotypic model to study mechanisms of glioma stem cell (GSC) invasion in the context of a vascular niche. It was confirmed that CXCL12-CXCR4 signaling is involved in promoting GSC invasion in a 3D vascular microenvironment, while also demonstrating the effectiveness of the microfluidic as a drug screening assay. Taken together, the broader impacts of the microfluidic model developed in this dissertation include, a possible alternative platform to animal testing that is focused on mimicking human physiology, a potential ex vivo platform using patient-derived cells for studying the interplay of cancer cells with its surrounding microenvironment, and development of future therapeutic strategies tailored toward disrupting key molecular pathways involved in regulatory mechanisms of cancer invasion.
ContributorsTruong, Danh, Ph.D (Author) / Nikkhah, Mehdi (Thesis advisor) / LaBaer, Joshua (Committee member) / Smith, Barbara (Committee member) / Mouneimne, Ghassan (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2018
131712-Thumbnail Image.png
Description
NIPAAm co-DEAEMA hydrogels are a potential solution for sustained, local delivery of ketorolac tromethamine. Current methods of postoperative pain management, such as local anesthetics, NSAIDs, and opioids, can be improved by minimizing side effects while still effectively treating severe and extreme pain. Though high doses of ketorolac can be toxic,

NIPAAm co-DEAEMA hydrogels are a potential solution for sustained, local delivery of ketorolac tromethamine. Current methods of postoperative pain management, such as local anesthetics, NSAIDs, and opioids, can be improved by minimizing side effects while still effectively treating severe and extreme pain. Though high doses of ketorolac can be toxic, sustained, local delivery via hydrogels offers a promising solution. Four ketorolac release studies were conducted using PNDJ hydrogels formulated by Sonoran Biosciences. The first two studies tested a range of JAAm concentration between 1.4 and 2.2 mole percent. Both had high initial release rates lasting less than 7 days and appeared to be unaffected by JAAm content. Tobramycin slowed down the release of ketorolac but was unable to sustain release for more than 6 days. Incorporating DEAEMA prolonged the release of ketorolac for up to 14 days with significant reductions in initial burst release rate. Low LCST of NIPAAM co-DEAEMA polymer is problematic for even drug distribution and future in vivo applications.
ContributorsHui, Nathan (Author) / Vernon, Brent (Thesis director) / Heffernan, John (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132760-Thumbnail Image.png
Description
Advancements in healthcare and the emergence of an aging population has led to an increase in the number of prosthetic joint procedures in the United States. According to Healthcare Cost and Utilization Project, 660,876 and 348,970 total hip and knee arthroplasties were performed in 2014[1].The percentage of total hip or

Advancements in healthcare and the emergence of an aging population has led to an increase in the number of prosthetic joint procedures in the United States. According to Healthcare Cost and Utilization Project, 660,876 and 348,970 total hip and knee arthroplasties were performed in 2014[1].The percentage of total hip or knee procedures that are revised due to an infection is 1.23% and 1.21% respectively[3], [4]. Although the percent of infections may be small, an infection can have a tremendous burden on the patient and healthcare system. It is expected that prosthetic joint infections (PJIs) will cost the healthcare system an estimated $1.62 billion by 2020[5]. PJIs are often difficult to treat due to the formation of biofilm at the site of the infection. A large majority of PJIs are the result of a bacterial biofilm, but around 1% of PJIs are due to fungal infections[3]. The current method of treatment is to surgically remove all infected tissue at the site of infection through a process called debridement and then insert a medicated bone cement spacer[7], [10]–[12]. One such medication that is loaded into the bone cement is caspofungin, a member of the echinocandin class of compounds that inhibit the synthesis of 1,3-β-D-glucan which is a crucial element of the cell wall of the target fungi[13]–[15]. For the studies reported herein, the caspofungin-loaded bone cement samples were made at 5 dosage strengths according to standard operating room practices. The elution of the drug was analyzed using ultraviolet spectrophotometry. The elution profiles were analyzed for 19 days consecutively, during which the 70 mg, 1 g, and 5 g dosage groups showed a prolonged, sustained release of the caspofungin. The 70 mg and 1 g dosage cumulative mass release profiles were not statistically significant, but it is unlikely that the difference would not have a clinical significance especially in the treatment of a fungal biofilm infection. The determination of the elution profile for caspofungin from loaded-bone cement can provide clinicians with a basis for how the drug will release into the infected joint.
ContributorsMoore, Rex C. (Author) / Vernon, Brent (Thesis director) / Overstreet, Derek (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
164948-Thumbnail Image.png
Description

Alginate microspheres have recently become increasingly popular in the realm of drug delivery for their biocompatibility, nontoxicity, inexpensiveness, among other factors. Recent strict regulations on microsphere size have drastically increased manufacturing cost and waste, even though the effect of size variance on drug delivery and subsequent performance is unclear. If

Alginate microspheres have recently become increasingly popular in the realm of drug delivery for their biocompatibility, nontoxicity, inexpensiveness, among other factors. Recent strict regulations on microsphere size have drastically increased manufacturing cost and waste, even though the effect of size variance on drug delivery and subsequent performance is unclear. If sphere size variance does not significantly affect drug release profiles, it is possible that future ordinances may loosen tolerances in manufacturing to limit waste produced and expenditures. We use a mathematical model developed by Nickel et al. [12], to theoretically predict drug delivery profiles based on sphere size, and correlate the expected release with experimental data. This model considers diffusion as the key component for drug delivery, which is defined by Fick’s Laws of Diffusion. Alginate, chosen for its simple fabrication method and biocompatibility, was formed into microspheres with a modified extrusion technique and characterized by size. Size variance was introduced in batches and delivery patterns were compared to control groups of identical size. Release patterns for brilliant blue dye, the mock drug chosen, were examined for both groups via UV spectrometry. The absorbance values were then converted to concentration value using a calibration curve done prior to experimentation. The concentration values were then converted to mass values. These values then produced curves representing the mass of the drug released over time. Although the control and experimental values were statistically significantly different, the curves were rather similar to each other. However, when compared to the predicted release pattern, the curves were not the same. Unexpected degradation caused this dissimilarity between the curves. The predictive model was then adjusted to account for degradation by changing the diffusion coefficient in the code to a reciprocal first order exponent. The similarity between the control and experimental curves can insinuate the notion that size tolerances for microsphere production can be somewhat lenient, as a batch containing fifteen beads of the same size and one with three different sizes yields similar release patterns.

ContributorsLyons, Quincy (Author) / de la Rocha, Gabriel (Co-author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164949-Thumbnail Image.png
Description
Alginate microspheres have recently become increasingly popular in the realm of drug delivery for their biocompatibility, nontoxicity, inexpensiveness, among other factors. Recent strict regulations on microsphere size have drastically increased manufacturing cost and waste, even though the effect of size variance on drug delivery and subsequent performance is unclear.

Alginate microspheres have recently become increasingly popular in the realm of drug delivery for their biocompatibility, nontoxicity, inexpensiveness, among other factors. Recent strict regulations on microsphere size have drastically increased manufacturing cost and waste, even though the effect of size variance on drug delivery and subsequent performance is unclear. If sphere size variance does not significantly affect drug release profiles, it is possible that future ordinances may loosen tolerances in manufacturing to limit waste produced and expenditures. We use a mathematical model developed by Nickel et al. [12], to theoretically predict drug delivery profiles based on sphere size, and correlate the expected release with experimental data. This model considers diffusion as the key component for drug delivery, which is defined by Fick’s Laws of Diffusion. Alginate, chosen for its simple fabrication method and biocompatibility, was formed into microspheres with a modified extrusion technique and characterized by size. Size variance was introduced in batches and delivery patterns were compared to control groups of identical size. Release patterns for brilliant blue dye, the mock drug chosen, were examined for both groups via UV spectrometry. The absorbance values were then converted to concentration value using a calibration curve done prior to experimentation. The concentration values were then converted to mass values. These values then produced curves representing the mass of the drug released over time. Although the control and experimental values were statistically significantly different, the curves were rather similar to each other. However, when compared to the predicted release pattern, the curves were not the same. Unexpected degradation caused this dissimilarity between the curves. The predictive model was then adjusted to account for degradation by changing the diffusion coefficient in the code to a reciprocal first order exponent. The similarity between the control and experimental curves can insinuate the notion that size tolerances for microsphere production can be somewhat lenient, as a batch containing fifteen beads of the same size and one with three different sizes yields similar release patterns.
Contributorsde la Rocha, Gabriel (Author) / Lyons, Quincy (Co-author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05