Matching Items (20)
Filtering by

Clear all filters

134185-Thumbnail Image.png
Description
37,461 automobile accident fatalities occured in the United States in 2016 ("Quick Facts 2016", 2017). Improving the safety of roads has traditionally been approached by governmental agencies including the National Highway Traffic Safety Administration and State Departments of Transporation. In past literature, automobile crash data is analyzed using time-series prediction

37,461 automobile accident fatalities occured in the United States in 2016 ("Quick Facts 2016", 2017). Improving the safety of roads has traditionally been approached by governmental agencies including the National Highway Traffic Safety Administration and State Departments of Transporation. In past literature, automobile crash data is analyzed using time-series prediction technicques to identify road segments and/or intersections likely to experience future crashes (Lord & Mannering, 2010). After dangerous zones have been identified road modifications can be implemented improving public safety. This project introduces a historical safety metric for evaluating the relative danger of roads in a road network. The historical safety metric can be used to update routing choices of individual drivers improving public safety by avoiding historically more dangerous routes. The metric is constructed using crash frequency, severity, location and traffic information. An analysis of publically-available crash and traffic data in Allgeheny County, Pennsylvania is used to generate the historical safety metric for a specific road network. Methods for evaluating routes based on the presented historical safety metric are included using the Mann Whitney U Test to evaluate the significance of routing decisions. The evaluation method presented requires routes have at least 20 crashes to be compared with significance testing. The safety of the road network is visualized using a heatmap to present distribution of the metric throughout Allgeheny County.
ContributorsGupta, Ariel Meron (Author) / Bansal, Ajay (Thesis director) / Sodemann, Angela (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133700-Thumbnail Image.png
Description
Abstract Older adults and people with disabilities are two unique populations, though they intersect in their need for mobility options that are often not met by traditional transportation services. There is consensus that the government should provide assistance for older adults and people with disabilities to achieve and maintain independence.

Abstract Older adults and people with disabilities are two unique populations, though they intersect in their need for mobility options that are often not met by traditional transportation services. There is consensus that the government should provide assistance for older adults and people with disabilities to achieve and maintain independence. However, the challenge lies in addressing the many forms of mobility inequity. Population projections for the twenty-first century have sparked interest in the rights of these two populations. As the population of the United States of America ages, supporting the mobility of seniors and individuals with disabilities will become imperative to maintaining their quality of life. One existing federal grant, Section 5310: Enhanced Mobility for Seniors and Individuals with Disabilities (49 U.S.C. 5310) provides formula funding for services that provide transportation options to older adults and people with disabilities. While the 5310 program provides crucial funding to non-profits and government agencies to support mobility options for older adults and people with disabilities, it does not address the full scope of mobility issues faced by these two communities. This thesis project provides a thorough analysis of this grant from the federal legislation it is founded on, to the local administration of this grant as applied by the Maricopa Association of Governments (MAG). Finally, this thesis looks at emerging technology with the potential to revolutionize mobility, along with sobering historical context of the barriers faced older adults and people with disabilities.
ContributorsValencia, Martin J. (Author) / Kelley, Jason (Thesis director) / Voorhees, Matthew (Committee member) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137517-Thumbnail Image.png
Description
Transit-oriented developments (TODs) are a promising strategy to increase public transit use and, as a result, reduce personal car travel. By using TOD infill to increase urban population density and encourage transportation mode-shifting, the potential exists to reduce life-cycle per capita energy use and environmental impacts of the interdependent infrastructure

Transit-oriented developments (TODs) are a promising strategy to increase public transit use and, as a result, reduce personal car travel. By using TOD infill to increase urban population density and encourage transportation mode-shifting, the potential exists to reduce life-cycle per capita energy use and environmental impacts of the interdependent infrastructure systems. This project specifically examined the Gold Line of light rail and Orange Line of bus rapid transit in Los Angeles, CA.
ContributorsNahlik, Matthew John (Author) / Chester, Mikhail (Thesis director) / Pendyala, Ram (Committee member) / Pincetl, Stephanie (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2013-05
137192-Thumbnail Image.png
Description
In this thesis a community-based ride sharing mobile application, Ride Devil, will be introduced and created to provide services for communities such as Arizona State University and its students, faculty, and other affiliates to find safe rides around campus because campus population problem exists. This causes increased transportation costs, decreased

In this thesis a community-based ride sharing mobile application, Ride Devil, will be introduced and created to provide services for communities such as Arizona State University and its students, faculty, and other affiliates to find safe rides around campus because campus population problem exists. This causes increased transportation costs, decreased parking space availability, and more transportation issues. The Ride Devil application itself is based off on the ride-sharing concept of transportation as introduced, above. Students, faculty, and other university affiliates will drive their own vehicles and use the Ride Devil services in order to coordinate pick-ups with members of its community. Not only is this form of transportation more cost effective than competing transportation models, taxis, but it also promotes safety, community, and educational assistance.
ContributorsVan Hook, Ryan Leo (Author) / Lin, Elva (Thesis director) / Peck, Sidnee (Committee member) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management (Contributor)
Created2014-05
133978-Thumbnail Image.png
Description
Arizona's transportation infrastructure is in need of an update. The American Society of Civil Engineers (ASCE) State Infrastructure 2017 Report Card scores Arizona's roads at a D+ and Arizona's bridges at a B. These grades are indicative that the serviceability levels of the roads and bridges are less than adequate.

Arizona's transportation infrastructure is in need of an update. The American Society of Civil Engineers (ASCE) State Infrastructure 2017 Report Card scores Arizona's roads at a D+ and Arizona's bridges at a B. These grades are indicative that the serviceability levels of the roads and bridges are less than adequate. These grades may seem tolerable in light of a national bridge C+ grade and a national road D grade, but the real problem lies in Arizona's existing funding gap that is in danger of exponentially increasing in the future. With an influx of vehicles on Arizona's roads and bridges, the cost of building, repairing, and maintaining them will grow and cause a problematic funding shortage. This report explores the current state of Arizona's roads and bridges as well as the policy and funding sources behind them, using statistics from the ASCE infrastructure report card and the Federal Highway Administration. Additionally, it discusses how regular, preventative maintenance for transportation infrastructure is the economically responsible choice for the state because it decreases delays and fuel expenses, prevents possible catastrophes, and increases human safety. To prioritize preventative transportation infrastructure maintenance, the common mentality that allows it to be sidelined for more newsworthy projects needs to be changed. Along with gaining preventative maintenance revenues through increasing vehicular taxes and fees, encouraging transportation policymakers and politicians to make economic decisions in favor of maintenance rather than waiting until failure is a reliable way to encourage regular, preventative maintenance.
ContributorsBurdett, Courtney (Author) / Hjelmstad, Keith (Thesis director) / Pendyala, Ram (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135785-Thumbnail Image.png
Description
Recurring incidents between pedestrians, bicycles, and vehicles at the intersection of Rural Road and Spence Avenue led to a team of students conducting their own investigation into the current conditions and analyzing a handful of alternatives. An extension of an industry-standard technique was used to build a control case which

Recurring incidents between pedestrians, bicycles, and vehicles at the intersection of Rural Road and Spence Avenue led to a team of students conducting their own investigation into the current conditions and analyzing a handful of alternatives. An extension of an industry-standard technique was used to build a control case which alternatives would be compared to. Four alternatives were identified, and the two that could be modeled in simulation software were both found to be technically feasible in the preliminary analysis.
ContributorsFellows, Christopher Lee (Author) / Lou, Yingyan (Thesis director) / Zhou, Xuesong (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135690-Thumbnail Image.png
Description
America's infrastructure is in dire straits according to the 2013 American Society of Civil Engineers (ASCE) Report Card, giving America a D+ average for all infrastructure categories. "The World Economic Forum's Global Competitiveness Report 2014-2015 ranks the U.S. 16th in quality of overall infrastructure" (Peters State). This paper addresses the

America's infrastructure is in dire straits according to the 2013 American Society of Civil Engineers (ASCE) Report Card, giving America a D+ average for all infrastructure categories. "The World Economic Forum's Global Competitiveness Report 2014-2015 ranks the U.S. 16th in quality of overall infrastructure" (Peters State). This paper addresses the need for investment in transportation infrastructure starting today, with a focus on bridges. The rates at which infrastructure is being built and maintained is not sustainable. Lack of funding causes states to practice deferred maintenance of infrastructure which ultimately results in higher overall costs. Timely maintenance and investment in current infrastructure is almost always the more economical approach. Despite conditions in Arizona, the rest of America is struggling with crumbling infrastructure. This paper stems from the Tex Wash Bridge failure on the Interstate-10 between California and Arizona in July 2015. A case study of four potential causes of the Tex Wash Bridge's collapse are discussed, along with several solutions that could have lessened the likelihood of failure. The condition of bridges are cataloged in the National Bridge Inventory managed by the Federal Highway Administration. In all reality, cost is not incurred at the instance of a bridge collapse, rather it is incremental throughout the infrastructure's lifetime. The impact of infrastructure failures are economic, social, and political. In the last decade, 33 short term fixes for project funding of roadways have been passed by Congress, none lasting longer than two years. The federal budget's underinvestment in infrastructure limits state departments of transportation ability to address high risk issues. Transportation is funded via the federal gasoline tax and vehicle license tax, along with state gasoline taxes. Unfortunately, the federal gasoline tax has not been increased since 1993. The Highway Trust Fund has subsequently faced insolvency in recent years. In 2011, America only committed 2.4% of its GDP to it's over 4 million miles of roads concluding that there is no interest to make transportation infrastructure a national priority. Currently, each state needs an average of $1 billion to address deficient bridges, and America needs $3.6 trillion to raise infrastructure ratings in the next five years. These needs can only be addressed at the federal level through long-term transportation legislation. It will require gaining investor confidence in tax spending, looking towards alternate funding such county taxes or toll roads, and capitalizing on the immediate interest generated by catastrophes. Mary Peters, former United States Secretary of Transportation, emphasizes the economic impact of underinvestment to foster political will, as opposed to focusing on America's crumbling infrastructure. Public safety and the economy are tied directly to the condition of America's infrastructure. For improvement on the national level, the disconnect between public understanding, engineering judgement, and political action must be remedied. The process starts by making America's infrastructure a national priority.
ContributorsRichards, Robert Huggins (Author) / Hjelmstad, Keith (Thesis director) / Lawrence, Christopher (Committee member) / Del E. Webb Construction (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147655-Thumbnail Image.png
Description

Technology continues to impact human's daily lives and behavior, from how we purchase our groceries to how we get access to news and the means we communicate with others. New technologies are constantly being introduced and are not only influencing the public but also how businesses operate. During this technological

Technology continues to impact human's daily lives and behavior, from how we purchase our groceries to how we get access to news and the means we communicate with others. New technologies are constantly being introduced and are not only influencing the public but also how businesses operate. During this technological era companies are investing more in research and development to learn more about the potential benefits of these technologies. This research, in particular, will address the need for companies' investment and continuous improvement in transportation management systems among complex supply chains to increase adoption rates of TMS technology. Also I will show how Transportation management systems have increased cost savings, customer satisfaction, the optimization of data, and planning. Such research is further supported by personal interviews with Intel, Big lots, Leslie’s Pools, and At Home, whom all have experience with transportation management systems within their business operations.

ContributorsSoto, Maria Guadalupe (Author) / Keane, Katy (Thesis director) / Blackmer, Cindie (Committee member) / Department of Supply Chain Management (Contributor) / Dean, W.P. Carey School of Business (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148043-Thumbnail Image.png
Description

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of travel. This paper looks at two individual vehicles forming a platoon and tracks the time headway between the two. Several speed profiles are explored for the following vehicle including a triangular and trapezoidal speed profile. It is discovered that a safety violation occurs during platoon formation where the desired time headway between the vehicles is violated. The aim of this research is to explore if this violation can be eliminated or reduced through utilization of different speed profiles.

ContributorsLarson, Kurt Gregory (Author) / Lou, Yingyan (Thesis director) / Chen, Yan (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
In response to the lasting negative effects of the COVID-19 pandemic on driver’s education and road safety, this thesis is intended to create an iOS application that recognizes and reports on poor driving habits. The end user opens the application to start a trip, the application records GPS data and

In response to the lasting negative effects of the COVID-19 pandemic on driver’s education and road safety, this thesis is intended to create an iOS application that recognizes and reports on poor driving habits. The end user opens the application to start a trip, the application records GPS data and information from APIs containing environmental information in a consistent, synchronized manner, patterns in said data are analyzed by the application to flag events representing different issues when driving, and when the user presses a button to end the trip, a report of the events is presented. The project was developed using a complete design process, including a full Research and Development process and detailed design documentation. Separate components of the application were developed in an iterative structure, with GPS information, the data synchronization system, API parsing and recording, data analysis, and feedback all being designed and tested separately. The application ultimately reached late beta status, with target stability and test results being achieved in typical use cases.
ContributorsBronzi, John (Author) / Meuth, Ryan (Thesis director) / Yee, Richard (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-12