Matching Items (7)
Filtering by

Clear all filters

156252-Thumbnail Image.png
Description
Recently, automation, shared use, and electrification are proposed and viewed as the “three revolutions” in the future transportation sector to significantly relieve traffic congestion, reduce pollutant emissions, and increase transportation system sustainability. Motivated by the three revolutions, this research targets on the passenger-focused scheduled transportation systems, where (1) the public

Recently, automation, shared use, and electrification are proposed and viewed as the “three revolutions” in the future transportation sector to significantly relieve traffic congestion, reduce pollutant emissions, and increase transportation system sustainability. Motivated by the three revolutions, this research targets on the passenger-focused scheduled transportation systems, where (1) the public transit systems provide high-quality ridesharing schedules/services and (2) the upcoming optimal activity planning systems offer the best vehicle routing and assignment for household daily scheduled activities.

The high quality of system observability is the fundamental guarantee for accurately predicting and controlling the system. The rich information from the emerging heterogeneous data sources is making it possible. This research proposes a modeling framework to systemically account for the multi-source sensor information in urban transit systems to quantify the estimated state uncertainty. A system of linear equations and inequalities is proposed to generate the information space. Also, the observation errors are further considered by a least square model. Then, a number of projection functions are introduced to match the relation between the unique information space and different system states, and its corresponding state estimate uncertainties are further quantified by calculating its maximum state range.

In addition to optimizing daily operations, the continuing advances in information technology provide precious individual travel behavior data and trip information for operational planning in transit systems. This research also proposes a new alternative modeling framework to systemically account for boundedly rational decision rules of travelers in a dynamic transit service network with tight capacity constraints. An agent-based single-level integer linear formulation is proposed and can be effectively by the Lagrangian decomposition.

The recently emerging trend of self-driving vehicles and information sharing technologies starts creating a revolutionary paradigm shift for traveler mobility applications. By considering a deterministic traveler decision making framework, this research addresses the challenges of how to optimally schedule household members’ daily scheduled activities under the complex household-level activity constraints by proposing a set of integer linear programming models. Meanwhile, in the microscopic car-following level, the trajectory optimization of autonomous vehicles is also studied by proposing a binary integer programming model.
ContributorsLiu, Jiangtao (Author) / Zhou, Xuesong (Thesis advisor) / Pendyala, Ram (Committee member) / Mirchandani, Pitu (Committee member) / Lou, Yingyan (Committee member) / Arizona State University (Publisher)
Created2018
156668-Thumbnail Image.png
Description
Priced Managed Lanes (MLs) have been increasingly advocated as one of the effective ways to mitigating congestion in recent years. This study explores a new and innovative pricing strategy for MLs called Travel Time Refund (TTR). The proposed TTR provides an additional option to paying drivers that insures their travel

Priced Managed Lanes (MLs) have been increasingly advocated as one of the effective ways to mitigating congestion in recent years. This study explores a new and innovative pricing strategy for MLs called Travel Time Refund (TTR). The proposed TTR provides an additional option to paying drivers that insures their travel time by issuing a refund to the toll cost if they do not reach their destination within specified travel times due to accidents or other unforeseen circumstances. Perceived benefits of TTR include raised public acceptance towards priced MLs, utilization increase of HOV/HOT lanes, overall congestion mitigation, and additional funding for relevant transportation agencies. To gauge travelers’ interests of TTR and to analyse its possible impacts, a stated preference (SP) survey was performed. An exploratory and statistical analysis of the survey responses revealed negative interest towards HOT and TTR option in accordance with common wisdom and previous studies. However, it is found that travelers are less negative about TTR than HOT alone; supporting the idea, that TTR could make HOT facilities more appealing. The impact of travel time reliability and latent variables representing psychological constructs on travelers’ choices in response to this new pricing strategy was also analysed. The results indicate that along with travel time and reliability, the decision maker’s attitudes and the level of comprehension of the concept of HOT and TTR play a significant role in their choice making. While the refund option may be theoretically and analytically feasible, the practical implementation issues cannot be ignored. This study also provides a discussion of the potential implementation considerations that include information provision to connected and non-connected vehicles, distinction between toll-only and refund customers, measurement of actual travel time, refund calculation and processing and safety and human factors issues. As the market availability of Connected and Automated Vehicles (CAVs) is prognosticated by 2020, the potential impact of such technologies on effective demand management, especially on MLs is worth investigating. Simulation analysis was performed to evaluate the system performance of a hypothetical road network at varying market penetration of CAVs. The results indicate that Connected Vehicles (CVs) could potentially encourage and enhance the use of MLs.
ContributorsVadlamani, Sravani (Author) / Lou, Yingyan (Thesis advisor) / Pendyala, Ram (Committee member) / Zhou, Xuesong (Committee member) / Grimm, Kevin (Committee member) / Arizona State University (Publisher)
Created2018
154860-Thumbnail Image.png
Description
Given that more and more planned special events are hosted in urban areas, during which travel demand is considerably higher than usual, it is one of the most effective strategies opening public rapid transit lines and building park-and-ride facilities to allow visitors to park their cars and take buses to

Given that more and more planned special events are hosted in urban areas, during which travel demand is considerably higher than usual, it is one of the most effective strategies opening public rapid transit lines and building park-and-ride facilities to allow visitors to park their cars and take buses to the event sites. In the meantime, special event workforce often needs to make balances among the limitations of construction budget, land use and targeted travel time budgets for visitors. As such, optimizing the park-and-ride locations and capacities is critical in this process of transportation management during planned special event. It is also known as park-and-ride facility design problem.

This thesis formulates and solves the park-and-ride facility design problem for special events based on space-time network models. The general network design process with park-and-ride facilities location design is first elaborated and then mathematical programming formulation is established for special events. Meanwhile with the purpose of relax some certain hard constraints in this problem, a transformed network model which the hard park-and-ride constraints are pre-built into the new network is constructed and solved with the similar solution algorithm. In doing so, the number of hard constraints and level of complexity of the studied problem can be considerable reduced in some cases. Through two case studies, it is proven that the proposed formulation and solution algorithms can provide effective decision supports in selecting the locations and capabilities of park-and-ride facilities for special events.
ContributorsZhu, Nana (Author) / Zhou, Xuesong (Thesis advisor) / Lou, Yingyan (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2016
135785-Thumbnail Image.png
Description
Recurring incidents between pedestrians, bicycles, and vehicles at the intersection of Rural Road and Spence Avenue led to a team of students conducting their own investigation into the current conditions and analyzing a handful of alternatives. An extension of an industry-standard technique was used to build a control case which

Recurring incidents between pedestrians, bicycles, and vehicles at the intersection of Rural Road and Spence Avenue led to a team of students conducting their own investigation into the current conditions and analyzing a handful of alternatives. An extension of an industry-standard technique was used to build a control case which alternatives would be compared to. Four alternatives were identified, and the two that could be modeled in simulation software were both found to be technically feasible in the preliminary analysis.
ContributorsFellows, Christopher Lee (Author) / Lou, Yingyan (Thesis director) / Zhou, Xuesong (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148043-Thumbnail Image.png
Description

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of travel. This paper looks at two individual vehicles forming a platoon and tracks the time headway between the two. Several speed profiles are explored for the following vehicle including a triangular and trapezoidal speed profile. It is discovered that a safety violation occurs during platoon formation where the desired time headway between the vehicles is violated. The aim of this research is to explore if this violation can be eliminated or reduced through utilization of different speed profiles.

ContributorsLarson, Kurt Gregory (Author) / Lou, Yingyan (Thesis director) / Chen, Yan (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
156079-Thumbnail Image.png
Description
This study explores an innovative framework for a self-sustained traffic operations system using vehicle-to-vehicle (V2V) communications alone. The proposed framework is envisioned as the foundation to an alternative or supplemental traffic operation and management system, which could be particularly helpful under abnormal traffic conditions caused by unforeseen disasters and special

This study explores an innovative framework for a self-sustained traffic operations system using vehicle-to-vehicle (V2V) communications alone. The proposed framework is envisioned as the foundation to an alternative or supplemental traffic operation and management system, which could be particularly helpful under abnormal traffic conditions caused by unforeseen disasters and special events. Its two major components, a distributed traffic monitoring and platoon information aggregation system and a platoon-based automated intersection control system, are investigated in this study.



The distributed traffic monitoring and platoon information aggregation system serves as the foundation. Specifically, each equipped vehicle, through the distributed protocols developed, keeps track of the average traffic density and speed within a certain range, flags itself as micro-discontinuity in traffic if appropriate, and cross-checks its flag status with its immediate up- and down-stream vehicles. The micro-discontinuity flags define vehicle groups with similar traffic states, for initiating and terminating traffic information aggregation. The impact of market penetration rate (MPR) is also investigated with a new methodology for performance evaluation under multiple traffic scenarios.

In addition to MPR, the performance of the distributed traffic monitoring and platoon information aggregation system depends on the spatial distribution of equipped vehicles in the road network as well. The latter is affected by traffic dynamics. Traffic signal controls at intersections play a significant role in governing traffic dynamics and will in turn impact the distributed monitoring system. The performance of the monitoring framework is investigated with different g/C ratios under multiple traffic scenarios.

With the distributed traffic monitoring and platoon information aggregation system, platoons can be dynamically identified on the network in real time. This enables a platoon-based automated intersection control system for connected and autonomous vehicles. An exploratory study on such a control system with two control stages are proposed. At Stage I, vehicles of each platoon will synchronize into a target speed through cooperative speed harmonization. Then, a platoon of vehicles with the same speed can be treated as a single vehicle for speed profile planning at Stage II. Its speed profile will be immediately determined given speed profiles of other platoons and the control goal.
ContributorsLi, Peiheng (Author) / Lou, Yingyan (Thesis advisor) / Zhou, Xuesong (Committee member) / Mirchandani, Pitu (Committee member) / Arizona State University (Publisher)
Created2017
157832-Thumbnail Image.png
Description
This dissertation investigates congestion mitigation during the ingress of a planned special event (PSE). PSEs would impact the regular operation of the transportation system within certain time periods due to increased travel demand or reduced capacities on certain road segments. For individual attendees, cruising for parking during a PSE could

This dissertation investigates congestion mitigation during the ingress of a planned special event (PSE). PSEs would impact the regular operation of the transportation system within certain time periods due to increased travel demand or reduced capacities on certain road segments. For individual attendees, cruising for parking during a PSE could be a struggle given the severe congestion and scarcity of parking spaces in the network. With the development of smartphones-based ridesharing services such as Uber/Lyft, more and more attendees are turning to ridesharing rather than driving by themselves. This study explores congestion mitigation during a planned special event considering parking, ridesharing and network configuration from both attendees and planner’s perspectives.

Parking availability (occupancy of parking facility) information is the fundamental building block for both travelers and planners to make parking-related decisions. It is highly valued by travelers and is one of the most important inputs to many parking models. This dissertation proposes a model-based practical framework to predict future occupancy from historical occupancy data alone. The framework consists of two modules: estimation of model parameters, and occupancy prediction. At the core of the predictive framework, a queuing model is employed to describe the stochastic occupancy change of a parking facility.

From an attendee’s perspective, the probability of finding parking at a particular parking facility is more treasured than occupancy information for parking search. However, it is hard to estimate parking probabilities even with accurate occupancy data in a dynamic environment. In the second part of this dissertation, taking one step further, the idea of introducing learning algorithms into parking guidance and information systems that employ a central server is investigated, in order to provide estimated optimal parking searching strategies to travelers. With the help of the Markov Decision Process (MDP), the parking searching process on a network with uncertain parking availabilities can be modeled and analyzed.

Finally, from a planner’s perspective, a bi-level model is proposed to generate a comprehensive PSE traffic management plan considering parking, ridesharing and route recommendations at the same time. The upper level is an optimization model aiming to minimize total travel time experienced by travelers. In the lower level, a link transmission model incorporating parking and ridesharing is used to evaluate decisions from and provide feedback to the upper level. A congestion relief algorithm is proposed and tested on a real-world network.
ContributorsXiao, Jun, Ph.D (Author) / Lou, Yingyan (Thesis advisor) / Pendyala, Ram (Committee member) / Zhou, Xuesong (Committee member) / Mirchandani, Pitu (Committee member) / Arizona State University (Publisher)
Created2019