Matching Items (13)
Filtering by

Clear all filters

151747-Thumbnail Image.png
Description
Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt

Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt binders by volatilization and oxidation due to high production temperature occur during early stages of pavement life and are known as Short Term Aging (STA). Elevated temperatures and increased exposure time to elevated temperatures causes increased STA of asphalt. The objective of this research was to investigate how elevated mixing temperatures and exposure time to elevated temperatures affect aging and stiffening of binders, thus influencing properties of the asphalt mixtures. The study was conducted in two stages. The first stage evaluated STA effect of asphalt binders. It involved aging two Performance Graded (PG) virgin asphalt binders, PG 76-16 and PG 64-22 at two different temperatures and durations, then measuring their viscosities. The second stage involved evaluating the effects of elevated STA temperature and time on properties of the asphalt mixtures. It involved STA of asphalt mixtures produced in the laboratory with the PG 64-22 binder at mixing temperatures elevated 25OF above standard practice; STA times at 2 and 4 hours longer than standard practices, and then compacted in a gyratory compactor. Dynamic modulus (E*) and Indirect Tensile Strength (IDT) were measured for the aged mixtures for each temperature and duration to determine the effect of different aging times and temperatures on the stiffness and fatigue properties of the aged asphalt mixtures. The binder test results showed that in all cases, there was increased viscosity. The results showed the highest increase in viscosity resulted from increased aging time. The results also indicated that PG 64-22 was more susceptible to elevated STA temperature and extended time than the PG 76-16 binders. The asphalt mixture test results confirmed the expected outcome that increasing the STA and mixing temperature by 25oF alters the stiffness of mixtures. Significant change in the dynamic modulus mostly occurred at four hour increase in STA time regardless of temperature.
ContributorsLolly, Rubben (Author) / Kaloush, Kamil (Thesis advisor) / Bearup, Wylie (Committee member) / Zapata, Claudia (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
156375-Thumbnail Image.png
Description

Asphalt concrete is the most recycled material in the United States and its reclamation allows the positive reuse of the constituent aggregates and asphalt binder, contributing to the long-term sustainability of the transportation infrastructure; decreasing costs, and the total energy and greenhouse emissions embodied into new materials and infrastructure. Although

Asphalt concrete is the most recycled material in the United States and its reclamation allows the positive reuse of the constituent aggregates and asphalt binder, contributing to the long-term sustainability of the transportation infrastructure; decreasing costs, and the total energy and greenhouse emissions embodied into new materials and infrastructure. Although the national trends in Reclaimed Asphalt Pavements (RAP) usage are encouraging, the environmental conditions in Phoenix, Arizona are extreme and needs further consideration.

The objective of this research study was to evaluate the viability of using RAP in future pavement maintenance and rehabilitation projects for the City. Agencies in the State of Arizona have been slow adopting the use of RAP as a regular practice. While the potential benefits are great, there is some concern on the impact to long-term pavement performance.

RAP millings were sampled from the city’s stockpiles; processed RAP and virgin materials were provided by a local plant. Two asphalt binders were used: PG 70-10 and PG 64-16. RAP variability was evaluated by aggregate gradations; extracted and recovered binder was tested for properties and grading.

A mixture design procedure based on the City’s specifications was defined to establish trial blends. RAP incorporation was based on national and local practices. Four different RAP contents were studied 10%, 15%, 25%, and 25% content with a softer binder, in addition to a control mix (0% RAP).

Performance tests included: dynamic modulus to evaluate stiffness; Flow Number, to assess susceptibility for permanent deformation (rutting); and Tensile Strength Ratio as a measure of susceptibility to moisture damage.

Binder testing showed very stiff recovered asphalts and variable contents with a reasonable variability on aggregate gradations. Performance test results showed slightly higher modulus as RAP content increases, showing a slight improvement related to rutting as well. For moisture damage potential, all mixtures performed well showing improvement for RAP mixtures in most cases.

Statistical analysis showed that 0%, 10%, 15% and 25% with softer binder do not present significant statistical difference among mixtures, indicating that moderate RAP contents are feasible to use within the City paving operations and will not affect greatly nor negatively the pavement performance.

ContributorsARREDONDO, GONZALO ZELADA (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2018
156317-Thumbnail Image.png
Description

The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to obtain properties that will help in future pavement designs. Currently,

The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to obtain properties that will help in future pavement designs. Currently, these fixtures (mounting studs) are made of expensive brass and cumbersome to clean with or without chemicals.

Three types of thermoplastics were utilized to assess the effect of temperature and applied stress on the performance of the 3D printed studs. Asphalt concrete samples fitted with thermoplastic studs were tested according to AASHTO & ASTM standards. The thermoplastics tested are: Polylactic acid (PLA), the most common 3D printing material; Acrylonitrile Butadiene Styrene (ABS), a typical 3D printing material which is less rigid than PLA and has a higher melting temperature; Polycarbonate (PC), a strong, high temperature 3D printing material.

A high traffic volume Marshal mix design from the City of Phoenix was obtained and adapted to a Superpave mix design methodology. The mix design is dense-graded with nominal maximum aggregate size of ¾” inch and a PG 70-10 binder. Samples were fabricated and the following tests were performed: Dynamic Modulus |E*| conducted at five temperatures and six frequencies; Flow Number conducted at a high temperature of 50°C, and axial cyclic fatigue test at a moderate temperature of 18°C.

The results from SPT for each 3D printed material were compared to results using brass mounting studs. Validation or rejection of the concept was determined from statistical analysis on the mean and variance of collected SPT test data.

The concept of using 3D printed thermoplastic for mounting stud fabrication is a promising option; however, the concept should be verified with more extensive research using a variety of asphalt mixes and operators to ensure no bias in the repeatability and reproducibility of test results. The Polycarbonate (PC) had a stronger layer bonding than ABS and PLA while printing. It was recommended for follow up studies.

ContributorsBeGell, Dirk (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffery (Committee member) / Arizona State University (Publisher)
Created2018
154520-Thumbnail Image.png
Description
The major challenge for any pavement is the freight transport carried by the structure. This challenge is expected to increase in the coming years as freight movements are projected to grow and because these movements account for most of the load related distresses for the pavement. Substantial effort has been

The major challenge for any pavement is the freight transport carried by the structure. This challenge is expected to increase in the coming years as freight movements are projected to grow and because these movements account for most of the load related distresses for the pavement. Substantial effort has been devoted to identifying the impacts of these future national freight trends with respect to the environment, economic growth, congestion, and reliability. These are all important aspects relating to the freight question, but an equally important and often overlooked aspect of this issue involves the impact of freight trends on the physical infrastructure. This study analyzes the impact of future freight traffic trends on 26 major interstates representing 68% of the total system mileage and carrying 80% of the total national roadway freight. The pavement segments were analyzed using the Mechanistic Empirical Pavement Design Guide software after collecting the relevant traffic, climate, structural, and material properties. Comparisons were drawn between the expected pavement performance using current design standards for traffic growth and performance predictions that incorporated more detailed freight projections which themselves considered job growth and six key drivers of freight movement. The differences in the resultant performance were used to generate maps that provide a bird’s eye view of locations that are especially vulnerable to future trends in freight movement. The analysis shows that the areas of greatest vulnerability include segments that are directly linked to the busiest ports, and surprisingly those from Atlantic and Central states that provide long distance connectivity, but do not currently carry the highest traffic volumes.
ContributorsNagarajan, Sathish Kannan (Author) / Underwood, Shane (Thesis advisor) / Kaloush, Kamil (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2016
154281-Thumbnail Image.png
Description
The fatigue resistance of asphalt concrete (AC) plays an important role in the service life of a pavement. For predicting the fatigue life of AC, there are several existing empirical and mechanistic models. However, the assessment and quantification of the ‘reliability’ of the predictions from these models is a substantial

The fatigue resistance of asphalt concrete (AC) plays an important role in the service life of a pavement. For predicting the fatigue life of AC, there are several existing empirical and mechanistic models. However, the assessment and quantification of the ‘reliability’ of the predictions from these models is a substantial knowledge gap. The importance of reliability in AC material performance predictions becomes all the more important in light of limited monetary and material resources. The goal of this dissertation research is to address these shortcomings by developing a framework for incorporating reliability into the prediction of mechanical models for AC and to improve the reliability of AC material performance prediction by using Fine Aggregate Matrix (FAM) phase data. The goal of the study is divided into four objectives; 1) development of a reliability framework for fatigue life prediction of AC materials using the simplified viscoelastic continuum damage (S-VECD) model, 2) development of test protocols for FAM in similar loading conditions as AC, 3) evaluation of the mechanical linkages between the AC and FAM mix through upscaling analysis, and 4) investigation of the hypothesis that the reliability of fatigue life prediction of AC can be improved with FAM data modeling.

In this research effort, a reliability framework is developed using Monte Carlo simulation for predicting the fatigue life of AC material using the S-VECD model. The reliability analysis reveals that the fatigue life prediction is very sensitive to the uncertainty in the input variables. FAM testing in similar loading conditions as AC, and upscaling of AC modulus and damage response using FAM properties from a relatively simple homogenized continuum approach shows promising results. The FAM phase fatigue life prediction and upscaling of FAM results to AC show more reliable fatigue life prediction than the fatigue life prediction of AC material using its experimental data. To assess the sensitivity of fatigue life prediction model to uncertainty in the input variables, a parametric sensitivity study is conducted on the S-VECD model. Overall, the findings from this research show promising results both in terms of upscaling FAM to AC properties and the reliability of fatigue prediction in AC using experimental data on FAM.
ContributorsGudipudi, Padmini Priyadarsini (Author) / Underwood, Benjamin S (Thesis advisor) / Kaloush, Kamil (Committee member) / Mamlouk, Michael (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2016
Description
With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that mimic the strength characteristics of a comparable part of the same design and materials created using injection molding. In achieving this goal the production cost can be reduced by eliminating the initial investment needed for the creation of expensive tooling. This initial investment reduction will allow for a wider variant of products in smaller batch runs to be made available. This thesis implements the use of ultraviolet (UV) illumination for an in-process laser local pre-deposition heating (LLPH). By comparing samples with and without the LLPH process it is determined that applied energy that is absorbed by the polymer is converted to an increase in the interlayer temperature, and resulting in an observed increase in tensile strength over the baseline test samples. The increase in interlayer bonding thus can be considered the dominating factor over polymer degradation.
ContributorsKusel, Scott Daniel (Author) / Hsu, Keng (Thesis advisor) / Sodemann, Angela (Committee member) / Kannan, Arunachala M (Committee member) / Arizona State University (Publisher)
Created2017
149502-Thumbnail Image.png
Description
Oxidative aging is an important factor in the long term performance of asphalt pavements. Oxidation and the associated stiffening can lead to cracking, which in turn can lead to the functional and structural failure of the pavement system. Therefore, a greater understanding of the nature of oxidative aging in asphalt

Oxidative aging is an important factor in the long term performance of asphalt pavements. Oxidation and the associated stiffening can lead to cracking, which in turn can lead to the functional and structural failure of the pavement system. Therefore, a greater understanding of the nature of oxidative aging in asphalt pavements can potentially be of great importance in estimating the performance of a pavement before it is constructed. Of particular interest are the effects of aging on asphalt rubber pavements, due to the fact that, as a newer technology, few asphalt rubber pavement sections have been evaluated for their full service life. This study endeavors to shed some light on this topic. This study includes three experimental programs on the aging of asphalt rubber binders and mixtures. The first phase addresses aging in asphalt rubber binders and their virgin bases. The binders were subjected to various aging conditions and then tested for viscosity. The change in viscosity was analyzed and it was found that asphalt rubber binders exhibited less long term aging. The second phase looks at aging in a laboratory environment, including both a comparison of accelerated oxidative aging techniques and aging effects that occur during long term storage. Dynamic modulus was used as a tool to assess the aging of the tested materials. It was found that aging materials in a compacted state is ideal, while aging in a loose state is unrealistic. Results not only showed a clear distinction in aged versus unaged material but also showed that the effects of aging on AR mixes is highly dependant on temperature; lower temperatures induce relatively minor stiffening while higher temperatures promote much more significant aging effects. The third experimental program is a field study that builds upon a previous study of pavement test sections. Field pavement samples were taken and tested after being in service for 7 years and tested for dynamic modulus and beam fatigue. As with the laboratory aging, the dynamic modulus samples show less stiffening at low temperatures and more at higher temperatures. Beam fatigue testing showed not only stiffening but also a brittle behavior.
ContributorsReed, Jordan (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2010
156436-Thumbnail Image.png
Description

Road networks are valuable assets that deteriorate over time and need to be preserved to an acceptable service level. Pavement management systems and pavement condition assessment have been implemented widely to routinely evaluate the condition of the road network, and to make recommendations for maintenance and rehabilitation in due time

Road networks are valuable assets that deteriorate over time and need to be preserved to an acceptable service level. Pavement management systems and pavement condition assessment have been implemented widely to routinely evaluate the condition of the road network, and to make recommendations for maintenance and rehabilitation in due time and manner. The problem with current practices is that pavement evaluation requires qualified raters to carry out manual pavement condition surveys, which can be labor intensive and time consuming. Advances in computing capabilities, image processing and sensing technologies has permitted the development of vehicles equipped with such technologies to assess pavement condition. The problem with this is that the equipment is costly, and not all agencies can afford to purchase it. Recent researchers have developed smartphone applications to address this data collection problem, but only works in a restricted set up, or calibration is recommended. This dissertation developed a simple method to continually and accurately quantify pavement condition of an entire road network by using technologies already embedded in new cars, smart phones, and by randomly collecting data from a population of road users. The method includes the development of a Ride Quality Index (RQI), and a methodology for analyzing the data from multi-factor uncertainty. It also derived a methodology to use the collected data through smartphone sensing into a pavement management system. The proposed methodology was validated with field studies, and the use of Monte Carlo method to estimate RQI from different longitudinal profiles. The study suggested RQI thresholds for different road settings, and a minimum samples required for the analysis. The implementation of this approach could help agencies to continually monitor the road network condition at a minimal cost, thus saving millions of dollars compared to traditional condition surveys. This approach also has the potential to reliably assess pavement ride quality for very large networks in matter of days.

ContributorsMedina Campillo, Jose Roberto (Author) / Kaloush, Kamil (Thesis advisor) / Underwood, Benjamin S (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffery (Committee member) / Arizona State University (Publisher)
Created2018
171706-Thumbnail Image.png
Description
Thermal susceptibility is one of the biggest challenges that asphalt pavements must overcome. Asphalt mixture’s thermal susceptibility can increase problems related to permanent deformation, and the expansion-contraction phenomenon triggers thermal cracking. Furthermore, there is a common worldwide interest in environmental impacts and pavements. Saving energy and mitigating the urban heat

Thermal susceptibility is one of the biggest challenges that asphalt pavements must overcome. Asphalt mixture’s thermal susceptibility can increase problems related to permanent deformation, and the expansion-contraction phenomenon triggers thermal cracking. Furthermore, there is a common worldwide interest in environmental impacts and pavements. Saving energy and mitigating the urban heat island (UHI) effect have been drawing the attention of researchers, governments, and industrial organizations. Pavements have been shown to play an important role in the UHI effect. Globally, about 90% of roadways are made of asphalt mixtures. The main objective of this research study involves the development and testing of an innovative aerogel-based product in the modification of asphalt mixtures to function as a material with unique thermal resistance properties, and potentially providing an urban cooling mechanism for the UHI. Other accomplishments included the development of test procedures to estimate the thermal conductivity of asphalt binders, the expansion-contraction of asphalt mixtures, and a computational tool to better understand the pavement’s thermal profile and stresses. Barriers related to the manufacturing and field implementation of the aerogel-based product were overcome. Unmodified and modified asphalt mixtures were manufactured at an asphalt plant to build pavement slabs. Thermocouples installed at top and bottom collected data daily. This data was valuable in understanding the temperature fluctuation of the pavement. Also, the mechanical properties of asphalt binders and mixtures with and without the novel product were evaluated in the laboratory. Fourier transform infrared (FTIR) and scanning electron microscope (SEM) analyses were also used to understand the interaction of the developed product with bituminous materials. The modified pavements showed desirable results in reducing overall pavement temperatures and suppressing the temperature gradient, a key to minimize thermal cracking. The comprehensive laboratory tests showed favorable outcomes for pavement performance. The use of a pavement design software, and life cycle/cost assessment studies supported the use of this newly developed technology. Modified pavements would perform better than control in distresses related to permanent deformation and thermal cracking; they reduce tire/pavement noise, require less raw material usage during their life cycle, and have lower life cycle cost compared to conventional pavements.
ContributorsObando Gamboa, Carlos Javier (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Ozer, Hasan (Committee member) / Fini, Elham (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2022
154324-Thumbnail Image.png
Description
This study examines the outcomes of roundabouts in the State of Arizona. Two types of roundabouts are introduced in this study, single-lane roundabouts and double-lane roundabouts. A total of 17 roundabouts across Arizona were chosen upon several selection criteria and according to the availability of data for roundabouts in Arizona.

This study examines the outcomes of roundabouts in the State of Arizona. Two types of roundabouts are introduced in this study, single-lane roundabouts and double-lane roundabouts. A total of 17 roundabouts across Arizona were chosen upon several selection criteria and according to the availability of data for roundabouts in Arizona. Government officials and local cities’ personnel were involved in this work in order to achieve the most accurate results possible. This thesis focused mainly on the impact of roundabouts on the accident rates, accident severities, and any specific trends that could have been found. Scottsdale, Sedona, Phoenix, Prescott, and Cottonwood are the cities that were involved in this study. As an overall result, both types of roundabouts showed improvements in decreasing the severity of accidents. Single-lane roundabouts had the advantage of largely reducing the overall rate of accidents by 18%, while double-lane roundabouts increased the accident rate by 62%. Although the number of fatalities was very small, both types of roundabouts were able to stop all fatalities during the analysis periods used in this study. Damage rates increased by 2% and 60% for single-lane and double-lane roundabouts, respectively. All levels of injury severities dropped by 44% and 16% for single-lane and double-lane roundabouts, respectively. Education and awareness levels of the public still need to be improved in order for people to be able to drive within the roundabouts safely.
ContributorsSouliman, Beshoy (Author) / Mamlouk, Michael (Thesis advisor) / Kaloush, Kamil (Committee member) / Zhou, Xuesong (Committee member) / Arizona State University (Publisher)
Created2016