Matching Items (22)
Filtering by

Clear all filters

152588-Thumbnail Image.png
Description
A methodology is developed that integrates institutional analysis with Life Cycle Assessment (LCA) to identify and overcome barriers to sustainability transitions and to bridge the gap between environmental practitioners and decisionmakers. LCA results are rarely joined with analyses of the social systems that control or influence decisionmaking and policies. As

A methodology is developed that integrates institutional analysis with Life Cycle Assessment (LCA) to identify and overcome barriers to sustainability transitions and to bridge the gap between environmental practitioners and decisionmakers. LCA results are rarely joined with analyses of the social systems that control or influence decisionmaking and policies. As a result, LCA conclusions generally lack information about who or what controls different parts of the system, where and when the processes' environmental decisionmaking happens, and what aspects of the system (i.e. a policy or regulatory requirement) would have to change to enable lower environmental impact futures. The value of the combined institutional analysis and LCA (the IA-LCA) is demonstrated using a case study of passenger transportation in the Phoenix, Arizona metropolitan area. A retrospective LCA is developed to estimate how roadway investment has enabled personal vehicle travel and its associated energy, environmental, and economic effects. Using regional travel forecasts, a prospective life cycle inventory is developed. Alternative trajectories are modeled to reveal future "savings" from reduced roadway construction and vehicle travel. An institutional analysis matches the LCA results with the specific institutions, players, and policies that should be targeted to enable transitions to these alternative futures. The results show that energy, economic, and environmental benefits from changes in passenger transportation systems are possible, but vary significantly depending on the timing of the interventions. Transition strategies aimed at the most optimistic benefits should include 1) significant land-use planning initiatives at the local and regional level to incentivize transit-oriented development infill and urban densification, 2) changes to state or federal gasoline taxes, 3) enacting a price on carbon, and 4) nearly doubling vehicle fuel efficiency together with greater market penetration of alternative fuel vehicles. This aggressive trajectory could decrease the 2050 energy consumption to 1995 levels, greenhouse gas emissions to 1995, particulate emissions to 2006, and smog-forming emissions to 1972. The potential benefits and costs are both private and public, and the results vary when transition strategies are applied in different spatial and temporal patterns.
ContributorsKimball, Mindy (Author) / Chester, Mikhail (Thesis advisor) / Allenby, Braden (Committee member) / Golub, Aaron (Committee member) / Arizona State University (Publisher)
Created2014
152779-Thumbnail Image.png
Description
It has been identified in the literature that there exists a "spatial mismatch" between geographical concentrations of lower-income or minority people who have relatively lower rates of car ownership, lower skills or educational attainment and who mainly rely on public transit for their travel, and low-skilled jobs for which they

It has been identified in the literature that there exists a "spatial mismatch" between geographical concentrations of lower-income or minority people who have relatively lower rates of car ownership, lower skills or educational attainment and who mainly rely on public transit for their travel, and low-skilled jobs for which they more easily qualify. Given this situation, various types of transportation projects have been constructed to improve public transit services and, alongside other goals, improve the connection between low-skilled workers and jobs. As indicators of performance, measures of job accessibility are commonly used in to gauge how such improvements have facilitated job access. Following this approach, this study investigates the impact of the Phoenix Metro Light Rail on job accessibility for the transit users, by calculating job accessibility before and after the opening of the system. Moreover, it also investigates the demographic profile of those who have benefited from improvements in job accessibility----both by income and by ethnicity. Job accessibility is measured using the cumulative opportunity approach which quantifies the job accessibility within different travel time limits, such as 30 and 45 minutes. ArcGIS is used for data processing and results visualization. Results show that the Phoenix light rail has improved job accessibility of the traffic analysis zones that are along the light rail line and Hispanic and lower-income groups have benefited more than their counterparts.
ContributorsLiu, Liyuan (Author) / Golub, Aaron (Thesis advisor) / Wentz, Elizabeth (Committee member) / Kuby, Michael (Committee member) / Arizona State University (Publisher)
Created2014
153482-Thumbnail Image.png
Description
Winter storms decrease the safety of roadways as it brings ice and snow to the roads and increases accidents, delays, and travel time. Not only are personal vehicles affected, but public transportation, commercial transportation, and emergency vehicles are affected as well. Portland, Oregon, and Seattle, Washington, both suffer from mild,

Winter storms decrease the safety of roadways as it brings ice and snow to the roads and increases accidents, delays, and travel time. Not only are personal vehicles affected, but public transportation, commercial transportation, and emergency vehicles are affected as well. Portland, Oregon, and Seattle, Washington, both suffer from mild, but sometimes extreme, storms that affect the entire city. Taking a closer look at the number of crashes reported by the City of Portland and the City of Seattle, it is seen that there is an increase in percent of crashes with reported road conditions of snow and ice. Both cities appear to have nearly the same reported crash percentages. Recommendations in combating the issue of increased accidents and the disruption of the city itself include looking into communication between the climate research institution and city planners that could help with planning for better mitigation during storms, a street or gas tax, although an impact study is important to keep in mind to make sure no part of the population is at risk; and engineering revolutions such as Solar Roadways that could benefit all cities.
ContributorsHoots, Danielle (Author) / Crewe, Katherine (Thesis advisor) / Golub, Aaron (Committee member) / Brazel, Anthony (Committee member) / Arizona State University (Publisher)
Created2015
153367-Thumbnail Image.png
Description
The conflict conditions that afflict the livelihoods of Palestinian residents living in the West Bank are embedded within the population's ability to travel more so than any other routine activity. For Palestinian residents, domestic and international travel is a process of following paths riddled with multiple barriers that are

The conflict conditions that afflict the livelihoods of Palestinian residents living in the West Bank are embedded within the population's ability to travel more so than any other routine activity. For Palestinian residents, domestic and international travel is a process of following paths riddled with multiple barriers that are both physical and political. Past studies have done well to paint a clear picture of the harsh transportation landscape in the region. However, less attention has focused on how barriers interact to indirectly and directly affect levels of accessibility and well-being. Additionally, suggested development solutions are rarely capable of being successfully implemented given current political conditions. This dissertation uses a systems approach to understand drivers of accessibility challenges in the West Bank and uses the understanding to propose a method to identify transition strategies that may be presently initiated whilst maintaining the ability to provide adequate benefit. The research question informing the study asks, How do drivers influencing the issue of poor accessibility and well-being in the West Bank persist and interact, and how might solutions be approached? The dissertation approaches the question in four sequential actions that each produces a functional planning deliverable. First, a system map that depicts the drivers and influences to the problem of poor accessibility and well-being is constructed (Chapter 4). Second, a future vision for the transportation system in the West Bank is identified (Chapter 5). Third, the system map and vision are used to assess how conflict conditions affect transition research (Chapter 6). Finally, the previous three deliverables are used to suggest a guide for transition management for transportation development in the West Bank (Chapter 7). Combinations of four different data sets, including an extensive review of published literature, field observations, individual field expert interviews, and group commuter interviews inform the research. Additionally, the Transformational Sustainability Research framework provides a normative base for the steps taken throughout the research. Ultimately, the dissertation presents an interpretation of information that has theoretical and practical application potential in transformational sustainability research and development efforts in the region respectively.
ContributorsAhmad, Omaya Heidi (Author) / Golub, Aaron (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Saleh Sadaqa, Ahmad (Committee member) / Arizona State University (Publisher)
Created2015
156317-Thumbnail Image.png
Description

The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to obtain properties that will help in future pavement designs. Currently,

The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to obtain properties that will help in future pavement designs. Currently, these fixtures (mounting studs) are made of expensive brass and cumbersome to clean with or without chemicals.

Three types of thermoplastics were utilized to assess the effect of temperature and applied stress on the performance of the 3D printed studs. Asphalt concrete samples fitted with thermoplastic studs were tested according to AASHTO & ASTM standards. The thermoplastics tested are: Polylactic acid (PLA), the most common 3D printing material; Acrylonitrile Butadiene Styrene (ABS), a typical 3D printing material which is less rigid than PLA and has a higher melting temperature; Polycarbonate (PC), a strong, high temperature 3D printing material.

A high traffic volume Marshal mix design from the City of Phoenix was obtained and adapted to a Superpave mix design methodology. The mix design is dense-graded with nominal maximum aggregate size of ¾” inch and a PG 70-10 binder. Samples were fabricated and the following tests were performed: Dynamic Modulus |E*| conducted at five temperatures and six frequencies; Flow Number conducted at a high temperature of 50°C, and axial cyclic fatigue test at a moderate temperature of 18°C.

The results from SPT for each 3D printed material were compared to results using brass mounting studs. Validation or rejection of the concept was determined from statistical analysis on the mean and variance of collected SPT test data.

The concept of using 3D printed thermoplastic for mounting stud fabrication is a promising option; however, the concept should be verified with more extensive research using a variety of asphalt mixes and operators to ensure no bias in the repeatability and reproducibility of test results. The Polycarbonate (PC) had a stronger layer bonding than ABS and PLA while printing. It was recommended for follow up studies.

ContributorsBeGell, Dirk (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffery (Committee member) / Arizona State University (Publisher)
Created2018
156880-Thumbnail Image.png
Description

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures in the field production. Organosilane (OS), a nanotechnology chemical substantially

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures in the field production. Organosilane (OS), a nanotechnology chemical substantially improves the bonding between aggregate and asphalt by modifying the aggregate structure from hydrophilic to hydrophobic contributing to increased moisture resistance of conventional asphalt mixtures. Use of Organosilane also reduces the mixing and compaction temperatures and facilitates similar compaction effort at lower temperatures. The objective of this research study was first to perform a Superpave mix design for Crumb Rubber Modified Binder (CRMB) gap-graded mixture with and without Organosilane; and secondly, analyse the performance of CRMB mixtures with and without Organosilane by conducting various laboratory tests. Performance Grade (PG) 64-22 binder was used to create the gap-graded Hot Mix Asphalt (HMA) mixtures for this study. Laboratory tests included rotational viscometer binder test and mixtures tests: dynamic modulus, flow number, tensile strength ratio, and C* fracture test. Results from the tests indicated that the addition of Organosilane facilitated easier compaction efforts despite reduced mixing and compaction temperatures. Organosilane also modestly increased the moisture susceptibility and resistance to crack propagation yet retaining equal rutting resistance of the CRMB mixtures.

ContributorsSrinivasan, Aswin Kumar Kumar (Author) / Kaloush, Kamil (Thesis advisor) / Medina, Jose R. (Jose Roberto) (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2018
154520-Thumbnail Image.png
Description
The major challenge for any pavement is the freight transport carried by the structure. This challenge is expected to increase in the coming years as freight movements are projected to grow and because these movements account for most of the load related distresses for the pavement. Substantial effort has been

The major challenge for any pavement is the freight transport carried by the structure. This challenge is expected to increase in the coming years as freight movements are projected to grow and because these movements account for most of the load related distresses for the pavement. Substantial effort has been devoted to identifying the impacts of these future national freight trends with respect to the environment, economic growth, congestion, and reliability. These are all important aspects relating to the freight question, but an equally important and often overlooked aspect of this issue involves the impact of freight trends on the physical infrastructure. This study analyzes the impact of future freight traffic trends on 26 major interstates representing 68% of the total system mileage and carrying 80% of the total national roadway freight. The pavement segments were analyzed using the Mechanistic Empirical Pavement Design Guide software after collecting the relevant traffic, climate, structural, and material properties. Comparisons were drawn between the expected pavement performance using current design standards for traffic growth and performance predictions that incorporated more detailed freight projections which themselves considered job growth and six key drivers of freight movement. The differences in the resultant performance were used to generate maps that provide a bird’s eye view of locations that are especially vulnerable to future trends in freight movement. The analysis shows that the areas of greatest vulnerability include segments that are directly linked to the busiest ports, and surprisingly those from Atlantic and Central states that provide long distance connectivity, but do not currently carry the highest traffic volumes.
ContributorsNagarajan, Sathish Kannan (Author) / Underwood, Shane (Thesis advisor) / Kaloush, Kamil (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2016
154607-Thumbnail Image.png
Description
Transportation infrastructure in urban areas has significant impacts on socio-economic activities, land use, and real property values. This dissertation proposes a more comprehensive theory of the positive and negative relationships between property values and transportation investments that distinguishes different effects by mode (rail vs. road), by network component (nodes vs.

Transportation infrastructure in urban areas has significant impacts on socio-economic activities, land use, and real property values. This dissertation proposes a more comprehensive theory of the positive and negative relationships between property values and transportation investments that distinguishes different effects by mode (rail vs. road), by network component (nodes vs. links), and by distance from them. It hypothesizes that transportation investment generates improvement in accessibility that accrue only to the nodes such as highway exits and light rail stations. Simultaneously, it tests the hypothesis that both transport nodes and links emanate short-distance negative nuisance effects due to disamenities such as traffic and noise. It also tests the hypothesis that nodes of both modes generate a net effect combining accessibility and disamenities. For highways, the configuration at grade or above/below ground is also tested. In addition, this dissertation hypothesizes that the condition of road pavement may have an impact on residential property values adjacent to the road segments. As pavement condition improves, value of properties adjacent to a road are hypothesized to increase as well. A multiple-distance-bands approach is used to capture distance decay of amenities and disamenities from nodes and links; and pavement condition index (PCI) is used to test the relationship between road condition and residential property values. The hypotheses are tested using spatial hedonic models that are specific to each of residential and commercial property market. Results confirm that proximity to transport nodes are associated positively with both residential and commercial property values. As a function of distance from highway exits and light rail transit (LRT) stations, the distance-band coefficients form a conventional distance decay curve. However, contrary to our hypotheses, no net effect is evident. The accessibility effect for highway exits extends farther than for LRT stations in residential model as expected. The highway configuration effect on residential home values confirms that below-grade highways have relatively positive impacts on nearby houses compared to those at ground level or above. Lastly, results for the relationship between pavement condition and residential home values show that there is no significant effect between them.

Some differences in the effect of infrastructure on property values emerge between residential and commercial markets. In the commercial models, the accessibility effect for highway exits extends less than for LRT stations. Though coefficients for short distances (within 300m) from highways and LRT links were expected to be negative in both residential and commercial models, only commercial models show a significant negative relationship. Different effects by mode, network component, and distance on commercial submarkets (i.e., industrial, office, retail and service properties) are tested as well and the results vary based on types of submarket.

Consequently, findings of three individual paper confirm that transportation investments mostly have significant impacts on real-estate properties either in a positive or negative direction in accordance with the transport mode, network component, and distance, though effects for some conditions (e.g., proximity to links of highway and light rail, and pavement quality) do not significantly change home values. Results can be used for city authorities and planners for funding mechanisms of transport infrastructure or validity of investments as well as private developers for maximizing development profits or for locating developments.
ContributorsSeo, Kihwan (Author) / Michael, Kuby (Thesis advisor) / Golub, Aaron (Committee member) / Salon, Deborah (Committee member) / Arizona State University (Publisher)
Created2016
154281-Thumbnail Image.png
Description
The fatigue resistance of asphalt concrete (AC) plays an important role in the service life of a pavement. For predicting the fatigue life of AC, there are several existing empirical and mechanistic models. However, the assessment and quantification of the ‘reliability’ of the predictions from these models is a substantial

The fatigue resistance of asphalt concrete (AC) plays an important role in the service life of a pavement. For predicting the fatigue life of AC, there are several existing empirical and mechanistic models. However, the assessment and quantification of the ‘reliability’ of the predictions from these models is a substantial knowledge gap. The importance of reliability in AC material performance predictions becomes all the more important in light of limited monetary and material resources. The goal of this dissertation research is to address these shortcomings by developing a framework for incorporating reliability into the prediction of mechanical models for AC and to improve the reliability of AC material performance prediction by using Fine Aggregate Matrix (FAM) phase data. The goal of the study is divided into four objectives; 1) development of a reliability framework for fatigue life prediction of AC materials using the simplified viscoelastic continuum damage (S-VECD) model, 2) development of test protocols for FAM in similar loading conditions as AC, 3) evaluation of the mechanical linkages between the AC and FAM mix through upscaling analysis, and 4) investigation of the hypothesis that the reliability of fatigue life prediction of AC can be improved with FAM data modeling.

In this research effort, a reliability framework is developed using Monte Carlo simulation for predicting the fatigue life of AC material using the S-VECD model. The reliability analysis reveals that the fatigue life prediction is very sensitive to the uncertainty in the input variables. FAM testing in similar loading conditions as AC, and upscaling of AC modulus and damage response using FAM properties from a relatively simple homogenized continuum approach shows promising results. The FAM phase fatigue life prediction and upscaling of FAM results to AC show more reliable fatigue life prediction than the fatigue life prediction of AC material using its experimental data. To assess the sensitivity of fatigue life prediction model to uncertainty in the input variables, a parametric sensitivity study is conducted on the S-VECD model. Overall, the findings from this research show promising results both in terms of upscaling FAM to AC properties and the reliability of fatigue prediction in AC using experimental data on FAM.
ContributorsGudipudi, Padmini Priyadarsini (Author) / Underwood, Benjamin S (Thesis advisor) / Kaloush, Kamil (Committee member) / Mamlouk, Michael (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2016
155740-Thumbnail Image.png
Description

Chloride solutions have historically been used to stabilize roads and to prevent dust; however, very little work has been done on investigating the soil stabilizing benefits from interactions between salt solutions and different soil types. The primary goal of this research was to analyze the feasibility of utilizing a salt

Chloride solutions have historically been used to stabilize roads and to prevent dust; however, very little work has been done on investigating the soil stabilizing benefits from interactions between salt solutions and different soil types. The primary goal of this research was to analyze the feasibility of utilizing a salt waste product as an economically and environmentally responsible means of dust control and/or soil stabilization. Specifically, this study documents an investigation leading to the understanding of how the addition of saline based waste products, when using a soil stabilizer, modifies the strength behavior of soils.

The scope of work included the evaluation of current literature, examination of the main challenges meeting relevant governmental regulations, and exploring the possibility of using saline waste to improve roadways.

Three soils were selected, treated with varying amounts of salt (calcium chloride, CaCl2), and tests included soil composition and classification, correlation of soil characteristics and salt, and obtaining strength parameters that are typically used in pavement design and analysis. The work effort also included the determination of the optimum dosage of salt concentration for each soil. Because Lime treatment is also commonly used in soil stabilization, one of the soils in this study included a treatment with Lime for comparison purposes.

Results revealed that when salt concentration was increased, a decrease in the plasticity index was observed in all soils. A modest to considerable strength gain of the treated material was also observed for two of the soils; however, a strength loss was observed for the third soil, which was attributed to its low clay content.

When comparing the soil corrosive potential, the additional salt treatment showed promise for increasing strength, to an extent; however, it changes the chemical properties of the soil. The soils prior to treatment were corrosive, which could be managed with appropriate techniques, but the salt increases the values to levels that could be potentially cost prohibitive if salt was used by itself to treat the soil.

The pavement design and performance investigation revealed that the Vineyard soil treated at 16% CaCl2 had an improvement that is comparable to the Lime treatment. On the other hand, the Eager soil showed very little pavement performance improvement at 8% CaCl2; this goes back to the effect of acid on the clay mineralogy. It was also postulated that using salt by-products to stabilize highway shoulders could be beneficial and save a lot of maintenance money when it comes to cleaning unwanted vegetation. A salt saturated soil structure could help in dust control as well.

Future environmental challenges for salt leaching that could affect agriculture in developing countries will still need to be carefully considered. The chlorine levels in the soil would increase, and if not treated, can potentially have corrosive effects on buried structures. Future research is recommended in this area and to also evaluate soil stabilizing properties of varying proportions of Lime and salt using the approach provided in this study.

ContributorsFakih, Ali (Author) / Kaloush, Kamil (Thesis advisor) / Zapata, Claudia E (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2017