Matching Items (13)
Filtering by

Clear all filters

152550-Thumbnail Image.png
Description
Since its inception in 1973, the Endangered Species Act has been met with both praise and criticism. More than 40 years later, the Act is still polarizing, with proponents applauding its power to protect species and critics arguing against its perceived ineffectiveness and potential mismanagement. Recovery plans, which were required

Since its inception in 1973, the Endangered Species Act has been met with both praise and criticism. More than 40 years later, the Act is still polarizing, with proponents applauding its power to protect species and critics arguing against its perceived ineffectiveness and potential mismanagement. Recovery plans, which were required by the 1988 amendments to the Act, play an important role in organizing efforts to protect and recover species under the Act. In 1999, in an effort to evaluate the process, the Society for Conservation Biology commissioned an independent review of endangered species recovery planning. From these findings, the SCB made key recommendations for how management agencies could improve the recovery planning process, after which the Fish and Wildlife Service and the National Marine Fisheries Service redrafted their recovery planning guidelines. One important recommendation called for recovery plans to make threats a primary focus, including organizing and prioritizing recovery tasks for threat abatement. Here, I seek to determine the extent to which SCB recommendations were incorporated into these new guidelines, and if, in turn, the recommendations regarding threats manifested in recovery plans written under the new guidelines. I found that the guidelines successfully incorporated most SCB recommendations, except those that addressed monitoring. As a result, recent recovery plans have improved in their treatment of threats, but still fail to adequately incorporate threat monitoring. This failure suggests that developing clear guidelines for monitoring should be an important priority in future ESA recovery planning.
ContributorsTroyer, Caitlin (Author) / Gerber, Leah (Thesis advisor) / Minteer, Ben (Committee member) / Guston, David (Committee member) / Arizona State University (Publisher)
Created2014
153912-Thumbnail Image.png
Description
Stream flow permanence plays a critical role in determining floristic composition, abundance, and diversity in the Sonoran Desert, but questions remain about the effects of stream flow permanence on butterfly composition, abundance, and diversity. Understanding the effects of flow permanence on butterflies and relevant subsets of butterflies (such as butterflies

Stream flow permanence plays a critical role in determining floristic composition, abundance, and diversity in the Sonoran Desert, but questions remain about the effects of stream flow permanence on butterfly composition, abundance, and diversity. Understanding the effects of flow permanence on butterflies and relevant subsets of butterflies (such as butterflies whose host plants are present) and comparing them to these same effects on plants and relevant subsets of plants (such as butterfly nectar plants and larval host plants) provided insight into pollinator and riparian conservation and restoration.

I surveyed four Sonoran desert stream sites, and found significant relationships between flow permanence and plant and butterfly species richness and abundance, as well as strong relationships between plant and butterfly abundance and between plant and butterfly species richness. Most notably, my results pointed to hosted butterflies as a break-out category of butterflies which may more clearly delineate ecological relationships between butterfly and plant abundance and diversity along Sonoran Desert streams; this can inform conservation decisions. Managing for hosted (resident) butterflies will necessarily entail managing for the presence of surface water, nectar forage, varying levels of canopy cover, and plant, nectar plant, and host plant diversity since the relationships between hosted butterfly species richness and/or abundance and all of these variables were significant, both statistically and ecologically.
ContributorsButler, Lane (Author) / Stromberg, Juliet C. (Thesis advisor) / Makings, Elizabeth (Committee member) / Pearson, David L (Committee member) / Boggess, May (Committee member) / Buchmann, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
153990-Thumbnail Image.png
Description
The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably diverse flora and fauna and a hub of rare and endemic plant species. The river has sustained cultures since pre-history,

The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably diverse flora and fauna and a hub of rare and endemic plant species. The river has sustained cultures since pre-history, however current regional water use is predicted to diminish streamflow over the next century. Prior to this project, no floristic inventory had been conducted along any section of the Verde. The purpose of this study was to develop a Flora of the Upper Verde River, with the goals of documenting rare and endemic species, the composition and abundance of wetland plants, and the factors shaping plant diversity in the region.

I made a total of 1856 collections and reviewed past collections to produce a checklist of 729 vascular plant taxa in 403 genera and 98 families. The most species-rich family is the Poaceae, followed by Asteraceae and Fabaceae. The flora includes 159 wetland taxa, 47 endemics, and 26 taxa of conservation concern, eight of which are Federally listed. Several new populations were found in these categories and of rarely-collected taxa including one state record, three county records and several range extensions. I report on the local status of several endemics, wetland taxa with limited distributions, and relict populations of a tepary bean (Phaseolus acutifolius) that were likely transported to the region and cultivated by pre-Columbian cultures. I categorize thirteen distinct plant communities, the most abundant being Pinyon/Juniper Woodland, Chihuahuan/Apacherian Scrub, and Riparian Deciduous Forest.

Four primary factors influence floristic diversity of the Upper Verde region: 1) a location at the junction of three physiographic and floristic provinces—represented by co-occurrence of species with affinities to the Sonoran, Intermountain and Madrean regions, 2) geologic diversity—as distinct groups of species are associated with particular geologic types, 3) topographic and habitat complexity—allowing species adapted to disparate environments to co-occur, and 4) human introductions—since over 15% of the flora is composed of introduced species from Eurasia and several taxa were introduced to the region and cultivated by pre-Columbian cultures.
ContributorsCoburn, Francis S (Author) / Stromberg, Juliet C. (Thesis advisor) / Landrum, Leslie R (Thesis advisor) / Makings, Elizabeth (Committee member) / Fertig, Walter F (Committee member) / Arizona State University (Publisher)
Created2015
154182-Thumbnail Image.png
Description
Small-scale fisheries are globally ubiquitous, employing more than 99% of the world’s fishers and providing over half of the world’s seafood. However, small-scale fisheries face many management challenges including declining catches, inadequate resources and infrastructure, and overcapacity. Baja California Sur, Mexico (BCS) is a region with diverse small-scale fisheries; these

Small-scale fisheries are globally ubiquitous, employing more than 99% of the world’s fishers and providing over half of the world’s seafood. However, small-scale fisheries face many management challenges including declining catches, inadequate resources and infrastructure, and overcapacity. Baja California Sur, Mexico (BCS) is a region with diverse small-scale fisheries; these fisheries are intense, poorly regulated, and overlap with foraging hot spots of endangered sea turtles. In partnership with researchers, fishers, managers, and practitioners from Mexico and the United States, I documented bycatch rates of loggerhead turtles at BCS that represent the highest known megafauna bycatch rates worldwide. Concurrently, I conducted a literature review that determined gear modifications were generally more successful than other commonly used fisheries management strategies for mitigating bycatch of vulnerable megafauna including seabirds, marine mammals, and sea turtles. I then applied these results by partnering with researchers, local fishers, and Mexico’s federal fisheries science agency to develop and test two gear modifications (i.e. buoyless and illuminated nets) in operating net fisheries at BCS as potential solutions to reduce bycatch of endangered sea turtles, improve fisheries sustainability, and maintain fisher livelihoods. I found that buoyless nets significantly reduced mean turtle bycatch rates by 68% while maintaining target catch rates and composition. By contrast, illuminated nets did not significantly reduce turtle bycatch rates across day-night periods, although they reduced mean turtle bycatch rates by 50% at night. Illuminated nets, however, significantly reduced mean rates of total bycatch biomass by 34% across day-night periods while maintaining target fish catch and market value. I conclude with a policy analysis of the unilateral identification of Mexico by the U.S. State Department under section 610 of the Magnusson-Stevens Fishery Conservation and Management Act for failure to manage bycatch of loggerhead turtles at BCS. Taken together, the gear modifications developed and tested here represent promising bycatch mitigation solutions with strong potential for commercial adoption, but fleet-wide conversion to more selective and turtle-friendly gear (e.g. hook and line and/or traps) at BCS, coupled with coordinated international conservation action, is ultimately needed to eliminate sea turtle bycatch and further improve fisheries sustainability.
ContributorsSenko, Jesse (Author) / Smith, Andrew (Thesis advisor) / Boggess, May (Committee member) / Chhetri, Nalini (Committee member) / Jenkins, Lekelia (Committee member) / Minteer, Ben (Committee member) / Arizona State University (Publisher)
Created2015
136714-Thumbnail Image.png
Description
Abstract This thesis is derived from the conservation biology field of study and seeks to chronicle and characterize the history of wolf conservation in the US, with a focus on post-ESA listing and present day events. The compelling question this thesis seeks to address is how to make long-term wolf

Abstract This thesis is derived from the conservation biology field of study and seeks to chronicle and characterize the history of wolf conservation in the US, with a focus on post-ESA listing and present day events. The compelling question this thesis seeks to address is how to make long-term wolf conservation effective and feasible in the United States. An overview of wolf life history is provided, as well as a brief overview of early wolf-human interactions in Europe and the US, before reviewing the following regions in the US: Yellowstone, Idaho/Montana/Wyoming, Alaska, and Arizona. The trend identified in all regions is described as a hostile political atmosphere with particular resentment by some stakeholders towards the federal enforcement of wolf conservation via the ESA. A comparative section on Italy is provided in contrast to this US theme, as Italy tends to have a much more relaxed attitude towards wolf conservation. For success in the future of wolf conservation three suggestions are made. First, efforts to protect wolves through federal regulation are to be dismissed. Second, efforts should instead focus on education of key demographics regarding responsible environmental management and wolf management specifically. Thirdly, conservationists must actively strive to remarket the wolf as a symbol of the freedom of the west as opposed to the symbol of Washington's encroachment on state's rights.
ContributorsCampini, Conner Pennington (Author) / Smith, Andrew (Thesis director) / Gerber, Leah (Committee member) / Minteer, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-12
133843-Thumbnail Image.png
Description
Amphibians have been experiencing a worldwide decline that is in part caused by an infectious disease, chytridiomycosis, specific to frogs and salamanders. Globally many species have declined or gone extinct because of the pathogenic fungus Batrachochytrium dendrobatidis, also known as the amphibian chytrid or Bd. By the time Bd was

Amphibians have been experiencing a worldwide decline that is in part caused by an infectious disease, chytridiomycosis, specific to frogs and salamanders. Globally many species have declined or gone extinct because of the pathogenic fungus Batrachochytrium dendrobatidis, also known as the amphibian chytrid or Bd. By the time Bd was discovered it was too late to stop the spread and it has now been found on almost every continent. The trade of captive amphibians, used as pets, bait, and educational animals provides an opportunity to spread Bd. Because some amphibians can carry Bd without experiencing symptoms, it is possible for even healthy looking amphibians to spread the amphibian chytrid if they are moved from one location to another. Recently, a new species Batrachochytrium salamandrivorans (Bsal) was found on salamanders. Bsal was identified before it reached the United States, prompting concern regarding its spread and a call for regulation regarding the trade of captive amphibians. There are some regulations in place controlling the trade of amphibians, but they are insufficient to stop the spread of amphibian chytrid in captive populations. A 2016 law prohibits the importation of 201 salamander species. However, there is no central organization to sample or certify if amphibians are free from Bd or Bsal. Although some stores say they test for these pathogens the tests are unregulated and not reported to any central body. If the captive amphibian trade is to go disease free, there would need to be a significant push to coordinate testing efforts. To estimate Bd's prevalence in Arizona captive amphibian populations, I contacted pet stores, bait stores, and sanctuary or educational organizations to ask if I could sample their amphibian collections. My research built on the 2008 work of Angela Picco, who sampled for the amphibian chytrid in Arizona bait shops. I found that amphibian owners were often hesitant and unwilling to participate in this research opportunity. There are multiple reasons for this hesitancy including a fear of increased regulation, the potential for reporting to a government agency (USDA), or the eventual cessation of amphibian trade. The lack of willing participants suggests there may be difficulties in coordinating future sampling efforts for Bd and Bsal.
ContributorsFadlovich, Rachel Maurine (Author) / Collins, James (Thesis director) / Minteer, Ben (Committee member) / Brus, Evan (Committee member) / School of Life Sciences (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137220-Thumbnail Image.png
Description
In 2007, the Center for Biological Diversity (CBD) petitioned the United States Fish and Wildlife Service (USFWS) and the California Department of Fish and Wildlife (CDFW) to list the American pika (Ochotona princeps) as an endangered species. After several petition denials, the petition was evaluated during both 90-day, and 12-month

In 2007, the Center for Biological Diversity (CBD) petitioned the United States Fish and Wildlife Service (USFWS) and the California Department of Fish and Wildlife (CDFW) to list the American pika (Ochotona princeps) as an endangered species. After several petition denials, the petition was evaluated during both 90-day, and 12-month reviews. Ultimately, both petitions were denied and the pika was not given protection under the Endangered Species Act (ESA). During the petitioning years, 2007 through 2013, there were many newspaper publications, press releases, and blog entries supporting the listing of the pika. Information published by these media ranged from misleading, to scientifically inaccurate. The public was swayed by these publications, and showed their support for listing the pika during the public comment period throughout the 12-month status review in California. While the majority of the public comments were in favor of listing the pika, there were a few letters that criticized the CBD for making a poster child out of a "cute" species. During the 12-month status review, the CDFW contacted pika experts and evaluated scientific literature to gain an understanding of the American pika's status. Seven years after the original petition, the CDFW denied listing the pika on the grounds that the species is not expected to become extinct in the next few decades. This case serves as an example where a prominent organization, the CBD, petitions to list a species that does not warrant protection. Their goal of making the pika the face of climate change failed when species was examined.
ContributorsBasso, Samantha Joy (Author) / Smith, Andrew (Thesis director) / Minteer, Ben (Committee member) / Angilletta, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
134703-Thumbnail Image.png
Description
The mainstream American environmental movement has a reputation for being ethnically homogenous (i.e., white), especially within the field of conservation. Low minority involvement has been noted and discussed in the conservation literature and within environmental organizations, but these discussions aren't always informed by the explicit social justice concerns critical to

The mainstream American environmental movement has a reputation for being ethnically homogenous (i.e., white), especially within the field of conservation. Low minority involvement has been noted and discussed in the conservation literature and within environmental organizations, but these discussions aren't always informed by the explicit social justice concerns critical to understanding the complex intersection of environmental and social issues. Communities of color have expressed concern for environmental and conservation issues, but often frame those issues in a different way than is common in mainstream conservation science, a framing that we can appreciate through a deeper analysis of the values and goals of the environmental justice (EJ) movement. A more thorough inclusion of EJ principles could be an effective method to increase ethnic diversity in the field of conservation, particularly within higher education conservation programs like the Conservation Biology and Ecology (CBE) concentration at Arizona State University. This thesis frames the broader challenge of diversity in conservation, the history and current state of the conservation movement, and the history of the environmental justice movement via a literature review. I then evaluate the university's CBE program on the basis of its diversity through an analysis of demographic data on undergraduate ethnicity from the School of Life Sciences. I conclude with a series of recommendations for enhancing the diversity of ASU's CBE program moving forward.
ContributorsLiska, Kelly Margaret (Author) / Minteer, Ben (Thesis director) / Richter, Jennifer (Committee member) / Hall, Sharon (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154370-Thumbnail Image.png
Description
It’s no secret that wetlands have dramatically declined in the arid and semiarid American West, yet the small number of wetlands that persist provide vital ecosystem services. Ciénega is a term that refers to a freshwater arid-land wetland. Today, even in areas where ciénegas are prominent they occupy less than

It’s no secret that wetlands have dramatically declined in the arid and semiarid American West, yet the small number of wetlands that persist provide vital ecosystem services. Ciénega is a term that refers to a freshwater arid-land wetland. Today, even in areas where ciénegas are prominent they occupy less than 0.1% of the landscape. This investigation assesses the distribution of vascular plant species within and among ciénegas and address linkages between environmental factors and wetland plant communities. Specifically, I ask: 1) What is the range of variability among ciénegas, with respect to wetland area, soil organic matter, plant species richness, and species composition? 2) How is plant species richness influenced locally by soil moisture, soil salinity, and canopy cover, and regionally by elevation, flow gradient (percent slope), and temporally by season? And 3) Within ciénegas, how do soil moisture, soil salinity, and canopy cover influence plant species community composition? To answer these questions I measured environmental variables and quantified vegetation at six cienegas within the Santa Cruz Watershed in southern Arizona over one spring and two post-monsoon periods. Ciénegas are highly variable with respect to wetland area, soil organic matter, plant species richness, and species composition. Therefore, it is important to conserve the ciénega landscape as opposed to conserving a single ciénega. Plant species richness is influenced negatively by soil moisture, positively by soil salinity, elevation, and flow gradient (percent slope), and is greater during the post-monsoon season. Despite concerns about woody plant encroachment reducing biodiversity, my investigation suggests canopy cover has no significant influence on ciénega species richness. Plant species community composition is structured by water availability at all ciénegas, which is consistent with the key role water availability plays in arid and semiarid regions. Effects of canopy and salinity structuring community composition are site specific. My investigation has laid the groundwork for ciénega conservation by providing baseline information of the ecology of these unique and threatened systems. The high variability of ciénega wetlands and the rare species they harbor combined with the numerous threats against them and their isolated occurrences makes these vanishing communities high priority for conservation.
ContributorsWolkis, Dustin (Author) / Stromberg, Juliet C. (Thesis advisor) / Hall, Sharon (Committee member) / Salywon, Andrew (Committee member) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2016
189405-Thumbnail Image.png
Description
Understanding the dynamic interactions between humans and wildlife is essential to establishing sustainable wildlife-based ecotourism (WBE). Animal behavior exists within a complex feedback loop that affects overall ecosystem function, tourist satisfaction, and socioeconomics of local communities. However, the specific value that animal behavior plays in provisioning ecosystem services has not

Understanding the dynamic interactions between humans and wildlife is essential to establishing sustainable wildlife-based ecotourism (WBE). Animal behavior exists within a complex feedback loop that affects overall ecosystem function, tourist satisfaction, and socioeconomics of local communities. However, the specific value that animal behavior plays in provisioning ecosystem services has not been thoroughly evaluated. People enjoy activities that facilitate intimate contact with animals, and there are many perceived benefits associated with these experiences, such as encouraging pro-environmental attitudes that can lead to greater motivation for conservation. There is extensive research on the effects that unregulated tourism activity can have on wildlife behavior, which include implications for population health and survival. Prior to COVID-19, WBE was developing rapidly on a global scale, and the pause in activity caused by the pandemic gave natural systems the chance to recover from environmental damage from over-tourism and provided insights into how tourism could be less impactful in the future. Until now it has been undetermined how changes in animal behavior can alter the relationships and socioeconomics of this multidimensional system. This dissertation provides a thorough exploration of the behavioral, ecological, and economic parameters required to model biosocial interactions and feedbacks within the whale watching system in Las Perlas Archipelago, Panama. Through observational data collected in the field, this project assessed how unmanaged whale watching activity is affecting the behavior of Humpback whales in the area as well as the socioeconomic and conservation contributions of the industry. Additionally, it is necessary to consider what a sustainable form of wildlife tourism might be, and whether the incorporation of technology will help enhance visitor experience while reducing negative impacts on wildlife. To better ascertain whether this concept of this integration would be favorably viewed, a sample of individuals was surveyed about their experiences about using technology to enhance their interactions with nature. This research highlights the need for more deliberate identification and incorporation of the perceptions of all stakeholders (wildlife included) to develop a less-impactful WBE industry that provides people with opportunities to establish meaningful relationships with nature that motivate them to help meet the conservation challenges of today.
ContributorsSurrey, Katie (Author) / Gerber, Leah (Thesis advisor) / Guzman, Hector (Committee member) / Minteer, Ben (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2023