Matching Items (4)
Filtering by

Clear all filters

153912-Thumbnail Image.png
Description
Stream flow permanence plays a critical role in determining floristic composition, abundance, and diversity in the Sonoran Desert, but questions remain about the effects of stream flow permanence on butterfly composition, abundance, and diversity. Understanding the effects of flow permanence on butterflies and relevant subsets of butterflies (such as butterflies

Stream flow permanence plays a critical role in determining floristic composition, abundance, and diversity in the Sonoran Desert, but questions remain about the effects of stream flow permanence on butterfly composition, abundance, and diversity. Understanding the effects of flow permanence on butterflies and relevant subsets of butterflies (such as butterflies whose host plants are present) and comparing them to these same effects on plants and relevant subsets of plants (such as butterfly nectar plants and larval host plants) provided insight into pollinator and riparian conservation and restoration.

I surveyed four Sonoran desert stream sites, and found significant relationships between flow permanence and plant and butterfly species richness and abundance, as well as strong relationships between plant and butterfly abundance and between plant and butterfly species richness. Most notably, my results pointed to hosted butterflies as a break-out category of butterflies which may more clearly delineate ecological relationships between butterfly and plant abundance and diversity along Sonoran Desert streams; this can inform conservation decisions. Managing for hosted (resident) butterflies will necessarily entail managing for the presence of surface water, nectar forage, varying levels of canopy cover, and plant, nectar plant, and host plant diversity since the relationships between hosted butterfly species richness and/or abundance and all of these variables were significant, both statistically and ecologically.
ContributorsButler, Lane (Author) / Stromberg, Juliet C. (Thesis advisor) / Makings, Elizabeth (Committee member) / Pearson, David L (Committee member) / Boggess, May (Committee member) / Buchmann, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
153990-Thumbnail Image.png
Description
The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably diverse flora and fauna and a hub of rare and endemic plant species. The river has sustained cultures since pre-history,

The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably diverse flora and fauna and a hub of rare and endemic plant species. The river has sustained cultures since pre-history, however current regional water use is predicted to diminish streamflow over the next century. Prior to this project, no floristic inventory had been conducted along any section of the Verde. The purpose of this study was to develop a Flora of the Upper Verde River, with the goals of documenting rare and endemic species, the composition and abundance of wetland plants, and the factors shaping plant diversity in the region.

I made a total of 1856 collections and reviewed past collections to produce a checklist of 729 vascular plant taxa in 403 genera and 98 families. The most species-rich family is the Poaceae, followed by Asteraceae and Fabaceae. The flora includes 159 wetland taxa, 47 endemics, and 26 taxa of conservation concern, eight of which are Federally listed. Several new populations were found in these categories and of rarely-collected taxa including one state record, three county records and several range extensions. I report on the local status of several endemics, wetland taxa with limited distributions, and relict populations of a tepary bean (Phaseolus acutifolius) that were likely transported to the region and cultivated by pre-Columbian cultures. I categorize thirteen distinct plant communities, the most abundant being Pinyon/Juniper Woodland, Chihuahuan/Apacherian Scrub, and Riparian Deciduous Forest.

Four primary factors influence floristic diversity of the Upper Verde region: 1) a location at the junction of three physiographic and floristic provinces—represented by co-occurrence of species with affinities to the Sonoran, Intermountain and Madrean regions, 2) geologic diversity—as distinct groups of species are associated with particular geologic types, 3) topographic and habitat complexity—allowing species adapted to disparate environments to co-occur, and 4) human introductions—since over 15% of the flora is composed of introduced species from Eurasia and several taxa were introduced to the region and cultivated by pre-Columbian cultures.
ContributorsCoburn, Francis S (Author) / Stromberg, Juliet C. (Thesis advisor) / Landrum, Leslie R (Thesis advisor) / Makings, Elizabeth (Committee member) / Fertig, Walter F (Committee member) / Arizona State University (Publisher)
Created2015
133843-Thumbnail Image.png
Description
Amphibians have been experiencing a worldwide decline that is in part caused by an infectious disease, chytridiomycosis, specific to frogs and salamanders. Globally many species have declined or gone extinct because of the pathogenic fungus Batrachochytrium dendrobatidis, also known as the amphibian chytrid or Bd. By the time Bd was

Amphibians have been experiencing a worldwide decline that is in part caused by an infectious disease, chytridiomycosis, specific to frogs and salamanders. Globally many species have declined or gone extinct because of the pathogenic fungus Batrachochytrium dendrobatidis, also known as the amphibian chytrid or Bd. By the time Bd was discovered it was too late to stop the spread and it has now been found on almost every continent. The trade of captive amphibians, used as pets, bait, and educational animals provides an opportunity to spread Bd. Because some amphibians can carry Bd without experiencing symptoms, it is possible for even healthy looking amphibians to spread the amphibian chytrid if they are moved from one location to another. Recently, a new species Batrachochytrium salamandrivorans (Bsal) was found on salamanders. Bsal was identified before it reached the United States, prompting concern regarding its spread and a call for regulation regarding the trade of captive amphibians. There are some regulations in place controlling the trade of amphibians, but they are insufficient to stop the spread of amphibian chytrid in captive populations. A 2016 law prohibits the importation of 201 salamander species. However, there is no central organization to sample or certify if amphibians are free from Bd or Bsal. Although some stores say they test for these pathogens the tests are unregulated and not reported to any central body. If the captive amphibian trade is to go disease free, there would need to be a significant push to coordinate testing efforts. To estimate Bd's prevalence in Arizona captive amphibian populations, I contacted pet stores, bait stores, and sanctuary or educational organizations to ask if I could sample their amphibian collections. My research built on the 2008 work of Angela Picco, who sampled for the amphibian chytrid in Arizona bait shops. I found that amphibian owners were often hesitant and unwilling to participate in this research opportunity. There are multiple reasons for this hesitancy including a fear of increased regulation, the potential for reporting to a government agency (USDA), or the eventual cessation of amphibian trade. The lack of willing participants suggests there may be difficulties in coordinating future sampling efforts for Bd and Bsal.
ContributorsFadlovich, Rachel Maurine (Author) / Collins, James (Thesis director) / Minteer, Ben (Committee member) / Brus, Evan (Committee member) / School of Life Sciences (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154370-Thumbnail Image.png
Description
It’s no secret that wetlands have dramatically declined in the arid and semiarid American West, yet the small number of wetlands that persist provide vital ecosystem services. Ciénega is a term that refers to a freshwater arid-land wetland. Today, even in areas where ciénegas are prominent they occupy less than

It’s no secret that wetlands have dramatically declined in the arid and semiarid American West, yet the small number of wetlands that persist provide vital ecosystem services. Ciénega is a term that refers to a freshwater arid-land wetland. Today, even in areas where ciénegas are prominent they occupy less than 0.1% of the landscape. This investigation assesses the distribution of vascular plant species within and among ciénegas and address linkages between environmental factors and wetland plant communities. Specifically, I ask: 1) What is the range of variability among ciénegas, with respect to wetland area, soil organic matter, plant species richness, and species composition? 2) How is plant species richness influenced locally by soil moisture, soil salinity, and canopy cover, and regionally by elevation, flow gradient (percent slope), and temporally by season? And 3) Within ciénegas, how do soil moisture, soil salinity, and canopy cover influence plant species community composition? To answer these questions I measured environmental variables and quantified vegetation at six cienegas within the Santa Cruz Watershed in southern Arizona over one spring and two post-monsoon periods. Ciénegas are highly variable with respect to wetland area, soil organic matter, plant species richness, and species composition. Therefore, it is important to conserve the ciénega landscape as opposed to conserving a single ciénega. Plant species richness is influenced negatively by soil moisture, positively by soil salinity, elevation, and flow gradient (percent slope), and is greater during the post-monsoon season. Despite concerns about woody plant encroachment reducing biodiversity, my investigation suggests canopy cover has no significant influence on ciénega species richness. Plant species community composition is structured by water availability at all ciénegas, which is consistent with the key role water availability plays in arid and semiarid regions. Effects of canopy and salinity structuring community composition are site specific. My investigation has laid the groundwork for ciénega conservation by providing baseline information of the ecology of these unique and threatened systems. The high variability of ciénega wetlands and the rare species they harbor combined with the numerous threats against them and their isolated occurrences makes these vanishing communities high priority for conservation.
ContributorsWolkis, Dustin (Author) / Stromberg, Juliet C. (Thesis advisor) / Hall, Sharon (Committee member) / Salywon, Andrew (Committee member) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2016